【題目】新生兒Apgar評(píng)分,即阿氏評(píng)分是對(duì)新生兒出生后總體狀況的一個(gè)評(píng)估,主要從呼吸、心率、反射、膚色、肌張力這幾個(gè)方面評(píng)分,滿10分者為正常新生兒,評(píng)分7分以下的新生兒考慮患有輕度窒息,評(píng)分在4分以下考慮患有重度窒息,大部分新生兒的評(píng)分多在7-10分之間,某市級(jí)醫(yī)院婦產(chǎn)科對(duì)1月份出生的新生兒隨機(jī)抽取了16名,以下表格記錄了他們的評(píng)分情況.
(1)現(xiàn)從16名新生兒中隨機(jī)抽取3名,求至多有1名評(píng)分不低于9分的概率;
(2)以這16名新生兒數(shù)據(jù)來估計(jì)本年度的總體數(shù)據(jù),若從本市本年度新生兒任選3名,記 表示抽到評(píng)分不低于9分的新生兒數(shù),求 的分布列及數(shù)學(xué)期望.

【答案】
(1)解:設(shè) 表示所抽取3名中有 名新生兒評(píng)分不低于9分,至多有1名評(píng)分不低于9分記為事件 ,則
(2)解:由表格數(shù)據(jù)知,從本市年度新生兒中任選1名評(píng)分不低于9分的概率為 ,則由題意知 的可能取值為0,1,2,3.

; .

所以 的分布列為

由表格得 .(或


【解析】(1)根據(jù)題意利用古典型概率即可求出結(jié)果。(2)由已知可得利用伯努利概率公式求出各個(gè)X 的可能取值的概率值列表即可,再根據(jù)期望公式代入數(shù)值求解即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了解某市民用電情況,抽查了該市100戶居民月均用電量(單位:,分組的頻率分布直方圖如圖所示.

(1)求樣本中月均用電量為的用戶數(shù)量;

(2)估計(jì)月均用電量的中位數(shù);

(3)在月均用電量為的四組用戶中,用分層抽樣的方法抽取22戶居民,則月均用電量為的用戶中應(yīng)該抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 是定義在 上的奇函數(shù),且對(duì)任意實(shí)數(shù) ,恒有 .當(dāng) 時(shí), .
(1)求證: 是周期函數(shù);
(2)當(dāng) 時(shí),求 的解析式;
(3)計(jì)算 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD-A1B1C1D1,M,N分別為棱C1D1,C1C的中點(diǎn),有以下四個(gè)結(jié)論:

直線AMCC1是相交直線;直線AMBN是平行直線;

直線BNMB1是異面直線; 直線MNAC所成的角為60°.

其中正確的結(jié)論為___  (:把你認(rèn)為正確的結(jié)論序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行試銷,得到如下數(shù)據(jù)表:

(1)根據(jù)上表求出回歸直線方程 ,并預(yù)測(cè)當(dāng)單價(jià)定為8.3元時(shí)的銷量;
(2)如果該工廠每件產(chǎn)品的成本為5.5元,利用所求的回歸方程,要使得利潤最大,單價(jià)應(yīng)該定為多少?
附:線性回歸方程 中斜率和截距最小二乘估計(jì)計(jì)算公式:
,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中, 底面 ,底面 為直角梯形, , , 的中點(diǎn),平面 點(diǎn).、

(1)求證: ;
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線相切.

()求圓C1的標(biāo)準(zhǔn)方程;

()設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),AN垂直于x軸于點(diǎn)N,若動(dòng)點(diǎn)Q滿足

(其中m為非零常數(shù)),試求動(dòng)點(diǎn)Q的軌跡方程;

()()的結(jié)論下,當(dāng)m時(shí),得到動(dòng)點(diǎn)Q的軌跡為曲線C,與l1垂直的直線l與曲線C交于B,D兩點(diǎn),求OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)調(diào)查詢問110名性別不同的高中生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

計(jì)算得
附表:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
B.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)若的取值范圍;

(2)若不等式 的解集為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案