用長度為定值l的鐵絲圍成一個(gè)底面邊長是x,體積是V的正四棱柱形狀的框架.
(Ⅰ)試將V表示成x的函數(shù),并指出x的取值范圍;
(Ⅱ)當(dāng)正四棱柱的底面邊長和高之比是多少時(shí),其體積最大?
分析:(Ⅰ)先用為定值l和底面邊長x表示出正四棱柱的高,然后根據(jù)正四棱柱的體積公式等于底面積乘以高得到V與x的關(guān)系式,根據(jù)l-8x大于0得到x的范圍;
(Ⅱ)求出V′,討論導(dǎo)函數(shù)的正負(fù)決定函數(shù)的增減性得到函數(shù)的最大值時(shí)x的取值即可.
解答:解:(Ⅰ)由長度為定值l的鐵絲圍成的底面邊長為x,則正四棱柱的高為
l-8x
4
,根據(jù)體積公式得:
V=x2
l-8x
4
=
l
4
x2-2x3
又因?yàn)閘-8x>0且x>0解得x的取值范圍是(0,
1
8
).
(Ⅱ)求出V′=
l
2
x-6x2=-6x(x-
l
12
),
在(0,
l
12
)上,V′>0,函數(shù)單調(diào)遞增;在(
l
12
,
l
8
)上,V′<0,函數(shù)單調(diào)遞減.
∴當(dāng)x=
l
12
時(shí),V取最大值.
此時(shí),正四棱柱的高為
l
12
,于是當(dāng)正四棱柱底面邊長和高之比是1時(shí),其體積最大.
點(diǎn)評:考查學(xué)生會根據(jù)實(shí)際問題選擇合適的函數(shù)類型,掌握棱柱的體積公式,會利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•營口二模)如圖,用一根鐵絲折成一個(gè)扇形框架,要求框架所圍扇形面積為定值S,半徑為r,弧長為l,則使用鐵絲長度最小值時(shí)應(yīng)滿足的條件為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用長度為定值l的鐵絲圍成一個(gè)底面邊長是x,體積是V的正四棱柱形狀的框架.
(Ⅰ)試將V表示成x的函數(shù),并指出x的取值范圍;
(Ⅱ)當(dāng)正四棱柱的底面邊長和高之比是多少時(shí),其體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用長度為定值l的鐵絲圍成一個(gè)底面邊長是x,體積是V的正四棱柱形狀的框架.
(Ⅰ)試將V表示成x的函數(shù),并指出x的取值范圍;
(Ⅱ)當(dāng)正四棱柱的底面邊長和高之比是多少時(shí),其體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年春高二期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

用長度為定值l的鐵絲圍成一個(gè)底面邊長是x,體積是V的正四棱柱形狀的框架.
(Ⅰ)試將V表示成x的函數(shù),并指出x的取值范圍;
(Ⅱ)當(dāng)正四棱柱的底面邊長和高之比是多少時(shí),其體積最大?

查看答案和解析>>

同步練習(xí)冊答案