分析 利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)減區(qū)間.
解答 解:已知$f(x)=sinxcosx-{cos^2}(x+\frac{π}{4})$=$\frac{1}{2}$sin2x-$\frac{1+cos(2x+\frac{π}{2})}{2}$
=$\frac{1}{2}$sin2x+$\frac{1}{2}$sin2x-$\frac{1}{2}$=sin2x-$\frac{1}{2}$,
令2kπ+$\frac{π}{2}$≤2x≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{4}$≤x≤kπ+$\frac{3π}{4}$.
結(jié)合x∈[-π,0],可得f(x)的單調(diào)減區(qū)間為$[-\frac{3π}{4},0]$,
故答案為:$[-\frac{3π}{4},0]$.
點(diǎn)評 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱 | |
B. | 偶函數(shù)且它的圖象關(guān)于點(diǎn)$(\frac{3π}{2},0)$對稱 | |
C. | 奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱 | |
D. | 奇函數(shù)且它的圖象關(guān)于點(diǎn)$(\frac{3π}{2},0)$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y-2=0 | B. | y-1=0 | C. | x+3y-4=0 | D. | x-y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2sin(πx+$\frac{π}{6}$) | B. | f(x)=2sin(2πx+$\frac{π}{6}$) | C. | f(x)=2sin(πx+$\frac{π}{3}$) | D. | f(x)=2sin(2πx+$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com