【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機抽取人對共享產(chǎn)品對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系?

Ⅱ)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員隨機發(fā)放張超市的購物券,購物券金額以及發(fā)放的概率如下:

現(xiàn)有甲、乙兩人領取了購物券,記兩人領取的購物券的總金額為,求的分布列和數(shù)學期望.

參考公式 .

臨界值表:

【答案】(Ⅰ)答案見解析;(Ⅱ)答案見解析.

【解析】試題分析:

()依題意計算的觀測值,則可以在犯錯誤的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系.

()依題意, 的可能取值為, ,且, , ,據(jù)此得出分布列,計算數(shù)學期望.

試題解析:

Ⅰ)依題意,在本次的實驗中, 的觀測值 ,

故可以在犯錯誤的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系.

Ⅱ)依題意, 的可能取值為, ,

, ,

的分布列為:

故所求的數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)圖象上不同兩點, 處切線的斜率分別是, ,規(guī)定為線段的長度)叫做曲線在點之間的“彎曲度”,給出以下命題:

①函數(shù)圖象上兩點的橫坐標分別為1和2,則;

②存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);

③設點, 是拋物線上不同的兩點,則;

④設曲線是自然對數(shù)的底數(shù))上不同兩點, ,且,若恒成立,則實數(shù)的取值范圍是

其中真命題的序號為__________.(將所有真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,且 .

(Ⅰ)設 ,求的單調(diào)區(qū)間及極值;

(Ⅱ)證明:函數(shù)的圖象在函數(shù)的圖象的上方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,其焦距為2,離心率為

1)求橢圓的方程;

2)設橢圓的右焦點為, 軸上一點,滿足,過點作斜率不為0的直線交橢圓于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1以直線所過的定點為一個焦點,且短軸長為4.

Ⅰ)求橢圓C1的標準方程;

Ⅱ)已知橢圓C2的中心在原點,焦點在y軸上,且長軸和短軸的長分別是橢圓C1的長軸和短軸的長的(1),過點C(1,0)的直線l與橢圓C2交于A,B兩個不同的點,若,求△OAB的面積取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線與橢圓交于點, 軸上方),且.設點軸上的射影為,三角形的面積為2(如圖1.

1)求橢圓的方程;

2)設平行于的直線與橢圓相交,其弦的中點為.

①求證:直線的斜率為定值;

②設直線與橢圓相交于兩點軸上方),點為橢圓上異于, , 一點,直線于點于點,如圖2,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線和圓直線經(jīng)過拋物線的焦點,依次交拋物線與圓四點, ,的值為(

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組,如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為(  )

A. 6 B. 8

C. 12 D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是 (為參數(shù)).

(1)將曲線的極坐標方程化為直角坐標方程;

(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

查看答案和解析>>

同步練習冊答案