已知函數(shù),其中a為常數(shù).
(Ⅰ)若f(x)在(0,1)上單調遞增,求實數(shù)a的取值范圍;
(Ⅱ)求證:D
【答案】分析:(1)根據題意,由函數(shù)f(x)在(0,1)上單調遞增,可得f′(x)=2x-a+≥0在(0,1)上恒成立,進而轉化為2x+≥a在(0,1)上恒成立,令t=2x+,通過對t求導判斷單調性,可得t的最小值為1,由不等關系可得答案.
(2)由(1)的結論,分析可得f(x)>f(0),化簡可得ln(x+1)>x-x2,令x=,(n≥2),可得ln(+1)>-,變形可得ln,所以=++…+<ln+ln+…+ln,由對數(shù)的運算性質,化簡可得證明.
解答:解:(1)根據題意,函數(shù)在(0,1)上單調遞增,
則f′(x)=2x-a+≥0在(0,1)上恒成立;
即2x+≥a在(0,1)上恒成立,
令t=2x+,則t′=1+()′=1-,
又由x∈(0,1),則t′>0,
則t在(0,1)是增函數(shù),
故有2x+>1,
所以求得a≤1,
(2)證明:由(1)可得,當a=1時,f(x)在(0,1)上遞增,
所以f(x)>f(0),即ln(x+1)>x-x2,
令x=,(n≥2)則∈(0,]⊆(0,1),
所以有l(wèi)n(+1)>-,變形可得ln
所以=++…+<ln+ln+…+ln=ln;
即原不等式得證.
點評:本題考查不等式的證明與利用導數(shù)求函數(shù)的最值;(1)中注意x的范圍是(0,1),因(x+1)的范圍,不能將2x+轉化為2(x+1)+-2后,直接用基本不等式求其最小值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1a-x
-1
(其中a為常數(shù),x≠a).利用函數(shù)y=f(x)構造一個數(shù)列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,那么構造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,那么構造數(shù)列的過程就停止.
(Ⅰ)當a=1且x1=-1時,求數(shù)列{xn}的通項公式;
(Ⅱ)如果可以用上述方法構造出一個常數(shù)列,求a的取值范圍;
(Ⅲ)是否存在實數(shù)a,使得取定義域中的任一實數(shù)值作為x1,都可用上述方法構造出一個無窮數(shù)列{xn}?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數(shù))
(1)求函數(shù)y=f(x)的解析式;
(2)利用函數(shù)y=f(x)構造一個數(shù)列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,構造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,則構造數(shù)列的過程停止.
①如果可以用上述方法構造出一個常數(shù)列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構造出一個無窮數(shù)列{xn},求a實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•石景山區(qū)一模)已知函數(shù)y=f(x)對于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數(shù)).
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)利用函數(shù)y=f(x)構造一個數(shù)列,方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,那么構造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,那么構造數(shù)列的過程就停止.
(。┤绻梢杂蒙鲜龇椒嬙斐鲆粋常數(shù)列,求a的取值范圍;
(ⅱ)是否存在一個實數(shù)a,使得取定義域中的任一值作為x1,都可用上述方法構造出一個無窮數(shù)列{xn}?若存在,求出a的值;若不存在,請說明理由;
(ⅲ)當a=1時,若x1=-1,求數(shù)列{xn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(1+x),g(x)=loga(1+kx),其中a>0且a≠1.
(Ⅰ)當k=-2時,求函數(shù)h(x)=f(x)+g(x)的定義域;
(Ⅱ)若函數(shù)H(x)=f(x)-g(x)是奇函數(shù)(不為常函數(shù)),求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學新題型解析選編(7)(解析版) 題型:解答題

已知函數(shù)y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數(shù))
(1)求函數(shù)y=f(x)的解析式;
(2)利用函數(shù)y=f(x)構造一個數(shù)列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,構造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,則構造數(shù)列的過程停止.
①如果可以用上述方法構造出一個常數(shù)列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構造出一個無窮數(shù)列{xn},求a實數(shù)的值.

查看答案和解析>>

同步練習冊答案