求不等式ax+1<a2+x(a∈R)的解集.
考點:其他不等式的解法
專題:計算題,不等式的解法及應(yīng)用
分析:將原不等式化為(a-1)x<a2-1,對a-1分a-1>0、a-1=0及a-1<0三類討論,即可求得不等式ax+1<a2+x(a∈R)的解集.
解答: 解:將原不等式化為(a-1)x<a2-1.
①當a-1>0,即a>1時,x<a+1;
②當a-1<0,即a<1時,x>a+1;
③當a-1=0,即a=1時,不等式無解.
綜上所述,
當a>1時,不等式的解集為{x|x<a+1};
當a<1時,不等式的解集為{x|x>a+1};
當a=1時,不等式的解集為∅.
點評:本題考查含參數(shù)的一次不等式的解法,著重考查分類討論思想的應(yīng)用,考查運算求解能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a2=c2-b2+
2
ba
,則∠C=( 。
A、
π
6
B、
6
C、
π
4
D、
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線y=kx-1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中Q為原點),則K的值為( 。
A、
3
,-
3
B、4,-
3
C、
3
,-1
D、1,-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)圖象上某個最高點坐標為(2,
2
),由此最高點到相鄰的最低點間函數(shù)圖象與x軸交于一點(6,0).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求使函數(shù)取最小值時x的取值集合;
(Ⅲ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α是銳角,且sin(α-
π
6
)=
1
3
,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)+b(A、ω>0,0<φ<π,b為常數(shù))一段圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移
π
12
個單位,再將所得圖象上各點的橫坐標擴大為原來的4倍,得到函數(shù)y=g(x)的圖象.求函數(shù)g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+2bx+1(a,b為實數(shù)),x∈R,F(xiàn)(x)=
f(x)  ,  x>0
-f(x) ,  x<0 

(Ⅰ)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的表達式;
(Ⅱ)設(shè)m•n<0,m+n<0,a<0且f(x)為偶函數(shù),判斷F(m)+F(n)能否小于零.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程ax2+bx+2=0的兩根為-
1
2
和2.
(1)求a、b的值;
(2)解不等式ax2+bx-1>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
滿足|
a
|=|
b
|=1
,且它們的夾角為60°,則|2
a
-
b
|
=
 

查看答案和解析>>

同步練習冊答案