已知函數(shù)f(x)=Asin(ωx+φ)+b(A、ω>0,0<φ<π,b為常數(shù))一段圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移
π
12
個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)擴(kuò)大為原來的4倍,得到函數(shù)y=g(x)的圖象.求函數(shù)g(x)的單調(diào)遞增區(qū)間.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,即可求得函數(shù)的解析式.
(Ⅱ)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性求得g(x)的增區(qū)間.
解答: 解:(Ⅰ)由已知可得,A=5-2=3,b=
5+(-1)
2
=2
,因?yàn)?span id="f3wjatr" class="MathJye">T=(
12
-
π
6
)×4=π,所以ω=2.
由“五點(diǎn)法”作圖,
π
6
×2+φ=
π
2
,解得φ=
π
6

所以函數(shù)f(x)的解析式為f(x)=3sin(2x+
π
6
)+2
.  
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移
π
12
個(gè)單位后,
得到的函數(shù)解析式為y=3sin[2(x+
π
12
)+
π
6
]+2
,即y=3sin(2x+
π
3
)+2

再將圖象上各點(diǎn)的橫坐標(biāo)擴(kuò)大為原來的4倍,得g(x)=3sin(
1
2
x+
π
3
)+2

2kπ-
π
2
1
2
x+
π
3
≤2kπ+
π
2
,得4kπ-
3
≤x≤4kπ+
π
3
,
可得g(x)的單調(diào)遞增區(qū)間為[4kπ-
3
 , 4kπ+
π
3
]
,k∈Z.
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題p:a≠1或b≠-1,命題q:a+b≠0,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果(x3-
1
2x
)n
的展開式中只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,那么展開式中的所有項(xiàng)的系數(shù)和是( 。
A、
1
64
B、0
C、64
D、256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=(
x
2x+1
n過點(diǎn)P(1,
1
9
),求函數(shù)在點(diǎn)P處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求不等式ax+1<a2+x(a∈R)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,x,x2-x},B={1,2,x},若集合A與集合B相等,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式:
(1)已知ax=
6
-
5
(a>0)
,求
a3x-a-3x
ax-a-x
的值;
(2)0.001-
1
3
-(
7
8
)0+16
3
4
+(
2
33
)6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(cosα,sinα),設(shè)
c
=
a
-t
b
(t為實(shí)數(shù)).
(Ⅰ)t=1時(shí),若
c
b
,求tanα;
(Ⅱ)若α=
π
4
,求|
c
|
的最小值,并求出此時(shí)向量
a
c
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)正數(shù)x,y滿足x+4y+5-xy=0,則xy取最小值時(shí)x=
 
,y=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案