2.禽流感是家禽養(yǎng)殖業(yè)的最大威脅.為檢驗某新藥物預防禽流感的效果,取80只家禽進行試驗,得到如下丟失數(shù)據(jù)的列聯(lián)表:(c,d,M,N表示丟失的數(shù)據(jù))
患病未患病總計
未服用藥ab40
服用藥5dM
總計25N80
(1)求出a,b,d,M,N的值,并判斷:能否有99.5%的把握認為藥物有效;
(2)若表中服用藥后患病的5只家禽分別為3只雞和2只鴨,現(xiàn)從這5只家禽中隨機選取2只,求這2只家禽是同一類的概率.
下面的臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (1)由題意即可求得a,b和d的值及M和N的值;入求觀測值的公式,做出觀測值,把所得的觀測值K2同參考數(shù)據(jù)進行比較,當K2>7.879,即可判斷有99.5%的把握認為藥物有效;
(2)求出基本事件的個數(shù),即可得出結論.

解答 解:(1)由題意,M=40,N=55,a=20,b=20,d=35,K2=$\frac{80(20×35-5×20)^{2}}{25×55×40×40}$≈13.1>7.879,
∴有99.5%的把握認為藥物有效;
(2)從這5只家禽中隨機選取2只,共有${C}_{5}^{2}$=10種方法,這2只家禽是同一類的概率=$\frac{{C}_{3}^{2}+{C}_{2}^{2}}{10}$=0.4.

點評 本題考查獨立性檢驗的列聯(lián)表,考查獨立性檢驗的觀測值,考查概率的計算,是一個綜合題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$+$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),短軸長2,兩焦點分別為F1,F(xiàn)2,過F1的直線交橢圓C于M,N兩點,且△F2MN的周長為8.
(1)求橢圓C的方程;
(2)直線l與橢圓C相交于A,B點,點D為橢圓C上一點,四邊形AOBD為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知橢圓C:$\frac{x^2}{25}+\frac{y^2}{9}$=1,F(xiàn)1,F(xiàn)2是該橢圓的左右焦點,點A(4,1),P是橢圓上的一個動點,當△APF1的周長取最大值時,△APF1的面積為$\frac{56}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若關于x的不等式|x-m|+|x+2|>4的解集為R,則實數(shù)m的取值范圍是( 。
A.(-2,6)B.(-∞,-6)∪(2,+∞)C.(-∞,-2)∪(6,+∞)D.(-6,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知sin($\frac{π}{3}$-α)=$\frac{1}{3}$,則sin($\frac{π}{6}$-2α)=( 。
A.$-\frac{7}{9}$B.$\frac{7}{9}$C.$±\frac{7}{9}$D.$-\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知關于x的不等式(m-1)x2+(m-1)x+2>0
(1)若m=0,求該不等式的解集
(2)若該不等式的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在正方體ABCD-A1B1C1D1中,M為DD1的中點,O為AC的中點,AB=1.
(1)求證:B1O⊥平面ACM;
(2)求三棱錐O-AB1M的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.α,β是兩個平面,m,n是兩條直線,有下列四個命題:
①如果m⊥n,m⊥α,n∥β,那么α⊥β.
②如果m⊥α,n∥α,那么m⊥n.
③如果α∥β,m?α,那么m∥β.
④如果m∥n,α∥β,那么m與α所成的角和n與β所成的角相等.
其中正確的命題的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案