10.在△ABC中,a2+c2=b2+$\sqrt{3}$ac.則角B的值為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

分析 把題設(shè)中的等式關(guān)系代入到關(guān)于B的余弦定理中,求得cosB的值,進(jìn)而求得B.

解答 解:△ABC中,∵a2+c2=b2+$\sqrt{3}$ac,
∴$\sqrt{3}$ac=a2+c2-b2,
∴cosB=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ac}$=$\frac{\sqrt{3}}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{6}$.
故選:A.

點評 本題主要考查了余弦定理的應(yīng)用.考查了對基礎(chǔ)知識的掌握.屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=(2-i)(1+2i)在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(λ+1,1),$\overrightarrow$=(λ+2,2),若($\overrightarrow{a}$-$\overrightarrow$)⊥($\overrightarrow{a}$+$\overrightarrow$),則實數(shù)λ=(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.給出下列四個函數(shù),在(0,+∞)為增函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=(x-1)2C.y=2-xD.y=log2(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合M={x|x2>4},N={-3,-2,2,3,4},則M∩N=(  )
A.{3,4}B.{-3,3,4}C.{-2,3,4}D.{-3,-2,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)全集U=R,A={x∈R|x<-1或x≥3},B={x∈R|x>2},求:
(1)∁UA;
(2)A∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.△ABC中,若三個角∠A、∠B、∠C及其所對的邊a,b,c均成等差數(shù)列,△ABC的面積為4$\sqrt{3}$,且∠B=$\frac{π}{3}$,那么b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若m,n滿足m+n-1=0,則直線mx+y+n=0過定點(  )
A.(1,-1)B.(0,-n)C.(0,0)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中an=2n+3,
(1)證明數(shù)列{an}是等差數(shù)列;
(2)求a1與d;
(3)判斷數(shù)列{an}的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案