18.給出下列四個(gè)函數(shù),在(0,+∞)為增函數(shù)的是(  )
A.y=$\frac{1}{x}$B.y=(x-1)2C.y=2-xD.y=log2(x+2)

分析 逐一分析四個(gè)函數(shù)在區(qū)間(0,+∞)上的單調(diào)性,可得答案.

解答 解:函數(shù)y=$\frac{1}{x}$在(0,+∞)為減函數(shù),
函數(shù)y=(x-1)2在(0,1)為減函數(shù),在(1,+∞)上為增函數(shù),
函數(shù)y=2-x在(0,+∞)為減函數(shù),
函數(shù)y=log2(x+2)在(0,+∞)為增函數(shù),
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性,熟練掌握各種基本初等函數(shù)的單調(diào)性,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.以直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐際系,已知曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}\right.$ (t為參數(shù)),
(Ⅰ)求C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A、B兩點(diǎn),求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知點(diǎn)A(a,-2),直線l的斜率為2a且過(guò)定點(diǎn)(0,2),B,C為直線l上的動(dòng)點(diǎn)且|BC|=2$\sqrt{7}$,則△ABC的面積的最小值為( 。
A.$\sqrt{7}$B.7C.2$\sqrt{7}$D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.f(x)是R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x3+ln(x+1),當(dāng)x>0時(shí),f(x)( 。
A.-x3-ln(1-x)B.x3+ln(1-x)C.x3-ln(1-x)D.-x3+ln(1-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知圓錐的母線長(zhǎng)為8,底面周長(zhǎng)為6π,則它的體積為3$\sqrt{55}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若$\frac{z}{1-i}=3+i$,i是虛數(shù)單位,則復(fù)數(shù)z的虛部為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,a2+c2=b2+$\sqrt{3}$ac.則角B的值為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=2${\;}^{\frac{1}{2}-x}$的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.給定如下命題
①在△ABC中,BC=2,AC=3,$∠B=\frac{π}{3}$,則△ABC是銳角三角形;
②若變量x,y線性相關(guān),其回歸方程為$\widehat{y}+x=2$,則x,y正相關(guān);
③若命題p:?x≥0,x2+x≥0,則¬p:?${x}_{0}<0,{x}_{0}^{2}+{x}_{0}<0$;
④將長(zhǎng)為8的鐵絲圍成一個(gè)矩形框,則該矩形面積大于3的概率為$\frac{1}{2}$;
⑤已知a>b>c>0,且2b>a+c,則$\frac{a-b}>\frac{c}{b-c}$.其中正確命題是①④⑤(只填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案