f(x)=2x4-3x2+1在[
1
2
,2]上的最大值、最小值分別是
 
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值
專題:導數(shù)的綜合應用
分析:先求導數(shù),得y′=8x3-6x,利用導數(shù)研究函數(shù)的單調(diào)性、極值、最值,并列出表格即可得出最大值與最小值.
解答: 解:∵f(x)=2x4-3x2+1,x∈[
1
2
,2]
∴f′(x)=8x3-6x=0,
解得x=0或x=
3
2
或x=-
3
2
(舍去),
x∈[
1
2
,
3
2
)
時,f′(x)<0,函數(shù)f(x)為減函數(shù);
x∈(
3
2
,2]
時,f′(x)>0,函數(shù)f(x)為增函數(shù);
∴f(x)=2x4-3x2+1在x=
3
2
時有最小值,最小值為-
1
8

又∵f(
1
2
)=
3
8
,f(2)=21
,
∴f(x)的最大值為21.
故答案為21,-
1
8
點評:熟練掌握利用導數(shù)研究函數(shù)的單調(diào)性、極值、最值的方法是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)正整數(shù)的無窮數(shù)列{an}(n∈N*) 滿足a4=4,an2-an-1an+1=1(n≥2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求經(jīng)過兩圓C1:x2+y2=4,C2:(x-1)2+(y-2)2=1交點,且被直線x+y-6=0平分的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖示,將y=f(x)的圖象向右平移
π
4
個單位后得到函數(shù)y=g(x)的 圖象.
(I )求函數(shù)y=g(x)的解析式;
(II)已知△ABC中三個內(nèi)角A,B,C的對邊分別為a,b,c,且滿足g(
A
2
+
π
12
)
+g(
B
2
+
π
12
)
=2
6
sinAsinaB,且C=
π
3
,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從某學校高三年級共800名男生中隨機抽取50名作為樣本測量身高.據(jù)測量,被測學生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160)第二組[160,165);…第八組[190,195].下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(Ⅰ)估計這所學校高三年級全體男生身高在180cm以上(含180cm)的人數(shù);
(Ⅱ)在上述樣本中從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x,y,求滿足“|x-y|≤5”的事件的概率;
(Ⅲ)在上述樣本中從最后三組中任取3名學生參加學;@球隊,用ξ表示從第八組中取到的學生人數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在二項式(
x
+
1
2
4x
n的展開式中,前三項的系數(shù)成等差數(shù)列,把展開式中所有的項重新排成一列,則有理項都不相鄰的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°.則BD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)y=x2-4x+3在y<0時x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)全體實數(shù)集為R,M={1,2},N={1,2,3,4},則(∁RM)∩N等于( 。
A、{4}
B、{3,4}
C、{2,3,4}
D、{1,2,3,4}

查看答案和解析>>

同步練習冊答案