【題目】已知點,動點到直線的距離與動點到點的距離之比為.

(1)求動點的軌跡的方程;

(2)過點作任一直線交曲線,兩點,過點的垂線交直線于點,求證:平分線段.

【答案】(1)(2)見證明

【解析】

(1)由動點到直線的距離與動點到點的距離之比為,列出方程,即可求解;

(2)設(shè)的直線方程為,得的直線方程為,分別與直線和橢圓的方程聯(lián)立方程組,利用根與系數(shù)的關(guān)系求得的坐標,將點坐標代入直線的方程,即可得到結(jié)論.

(1)設(shè),由動點到直線的距離與動點到點的距離之比為,

,化簡得.

(2)設(shè)的直線方程為,則的直線方程為,

聯(lián)立,解得,∴直線的方程為,

聯(lián)立

設(shè),,則,

設(shè)的中點為,則,

,∴,

將點坐標代入直線的方程,

∴點在直線上,∴平分線段.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定12,34表示命中,5,67,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線和直線的直角坐標方程;

(Ⅱ)直線軸交點為,經(jīng)過點的直線與曲線交于,兩點,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】誠信是立身之本,道德之基,某校學生會創(chuàng)設(shè)了“誠信水站”,既便于學生用水,又推進誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,下表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:

第一周

第二周

第三周

第四周

第一個周期

第二個周期

第三個周期

1)計算表中十二周“水站誠信度”的平均數(shù);

2)分別從表中每個周期的4個數(shù)據(jù)中隨機抽取1個數(shù)據(jù),設(shè)隨機變量表示取出的3個數(shù)中“水站誠信度”超過的數(shù)據(jù)的個數(shù),求隨機變量的分布列和期望;

3)已知學生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面四邊形中,、、所成的比為,即,則有:.

1)拓展到空間,寫出空間四邊形類似的命題,并加以證明;

2)在長方體中,,,、分別為、的中點,利用上述(1)的結(jié)論求線段的長度;

3)在所有棱長均為平行六面體中,為銳角定值),、、所成的比為,求的長度.(用,表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)購買某種儀器,在儀器使用期間可能出現(xiàn)故障,需要請銷售儀器的企業(yè)派工程師進行維修,因為考慮到人力、成本等多方面的原因,銷售儀器的企業(yè)提供以下購買儀器維修服務(wù)的條件:在購買儀器時,可以直接購買儀器維修服務(wù),維修一次1000元;在儀器使用期間,如果維修服務(wù)次數(shù)不夠再次購買,則需要每次1500元..現(xiàn)需決策在購買儀器的同時購買幾次儀器維修服務(wù),為此搜集并整理了500臺這種機器在使用期內(nèi)需要維修的次數(shù),得到如下表格:

維修次數(shù)

5

6

7

8

9

頻數(shù)(臺)

50

100

150

100

100

表示一臺儀器使用期內(nèi)維修的次數(shù),表示一臺儀器使用期內(nèi)維修所需要的費用,表示購買儀器的同時購買的維修服務(wù)的次數(shù).

(1)若,求的函數(shù)關(guān)系式;

(2)以這500臺儀器使用期內(nèi)維修次數(shù)的頻率代替一臺儀器維修次數(shù)發(fā)生的概率,求的概率.

(3)假設(shè)購買這500臺儀器的同時每臺都購買7次維修服務(wù),或每臺都購買8次維修服務(wù),請分別計算這500臺儀器在購買維修服務(wù)所需要費用的平均數(shù),以此為決策依據(jù),判斷購買7次還是8次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)當時,求:

①展開式中的中間一項;

②展開式中常數(shù)項的值;

2)若展開式中各項系數(shù)之和比各二項式系數(shù)之和大,求展開式中含項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長時間用手機上網(wǎng)嚴重影響著學生的健康,某校為了解A,B兩班學生手機上網(wǎng)的時長,分別從這兩個班中隨機抽取6名同學進行調(diào)查,將他們平均每周手機上網(wǎng)時長作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).如果學生平均每周手機上網(wǎng)的時長大于21小時,則稱為“過度用網(wǎng)”

1)請根據(jù)樣本數(shù)據(jù),分別估計A,B兩班的學生平均每周上網(wǎng)時長的平均值;

2)從A班的樣本數(shù)據(jù)中有放回地抽取2個數(shù)據(jù),求恰有1個數(shù)據(jù)為“過度用網(wǎng)”的概率;

3)從A班、B班的樣本中各隨機抽取2名學生的數(shù)據(jù),記“過度用網(wǎng)”的學生人數(shù)為,寫出的分布列和數(shù)學期望E.

查看答案和解析>>

同步練習冊答案