【題目】在平面四邊形中,、所成的比為,即,則有:.

1)拓展到空間,寫出空間四邊形類似的命題,并加以證明;

2)在長方體中,,、分別為、的中點,利用上述(1)的結(jié)論求線段的長度;

3)在所有棱長均為平行六面體中,為銳角定值),、、所成的比為,求的長度.(用,表示)

【答案】1)命題同題干,證明見解析;(2;(3

【解析】

1)由條件可得,利用向量的線性運算證明即可;

2)由(1)的結(jié)論可得,兩邊同時平方計算可得結(jié)果;

3)由(1)的結(jié)論可得,兩邊同時平方計算可得結(jié)果.

1)在空間四邊形中,、所成的比為,即,則有:.

證明:

;

2)由(1)的結(jié)論可得

,

;

3)如圖:

所成的角為,

又由(1)的結(jié)論可得,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加一次抽獎.隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商場對前5天抽獎活動的人數(shù)進行統(tǒng)計,y表示第x天參加抽獎活動的人數(shù),得到統(tǒng)計表如下:

x

1

2

3

4

5

y

50

60

70

80

100

經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)yx具有線性相關(guān)關(guān)系.

1)若從這5天隨機抽取兩天,求至少有1天參加抽獎人數(shù)超過70的概率;

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計該活動持續(xù)7天,共有多少名顧客參加抽獎?

參考公式及數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程的曲線即為函數(shù)的圖像,對于函數(shù),有如下結(jié)論:①上單調(diào)遞減;②函數(shù)不存在零點;③ 的最大值為;④若函數(shù)的圖像關(guān)于原點對稱,則由方程確定;其中所有正確的命題序號是(

A.③④B.②③C.①④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)所有263戶家庭人口數(shù)分組表示如下:

家庭人口數(shù)

1

2

3

4

5

6

7

8

9

10

家庭數(shù)

20

29

48

50

46

36

19

8

4

3

1)若將上述家庭人口數(shù)的263個數(shù)據(jù)分布記作,平均值記作,寫出人口數(shù)方差的計算公式(只要計算公式,不必計算結(jié)果);

2)寫出他們家庭人口數(shù)的中位數(shù)(直接給出結(jié)果即可);

3)計算家庭人口數(shù)的平均數(shù)與標(biāo)準(zhǔn)差.(寫出公式,再利用計算器計算,精確到0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,動點到直線的距離與動點到點的距離之比為.

(1)求動點的軌跡的方程;

(2)過點作任一直線交曲線,兩點,過點的垂線交直線于點,求證:平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,曲線在原點處的切線相同.

1)求,的值;

2)求的單調(diào)區(qū)間和極值;

3)若時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】件產(chǎn)品中,有件正品,件次品,從這件產(chǎn)品中任意抽取.

1)共有多少種不同的抽法?

2)抽出的件中恰有件次品的抽法有多少種?

3)抽出的件中至少有件次品的抽法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中,

①從分別標(biāo)有1,2,……,99張卡片中不放回地隨機抽取2次,每次抽取1張,則抽到的2張卡片上的數(shù)奇偶性不同的概率是;

的展開式中的常數(shù)項為2;

③設(shè)隨機變量,若,則.

其中所有正確命題的序號是(

A.B.①③

C.②③D.①②③

查看答案和解析>>

同步練習(xí)冊答案