如圖,設(shè)、分別是圓和橢圓的弦,且弦的端點在軸的異側(cè),端點與、與的橫坐標分別相等,縱坐標分別同號.
(Ⅰ)若弦所在直線斜率為,且弦的中點的橫坐標為,求直線的方程;
(Ⅱ)若弦過定點,試探究弦是否也必過某個定點. 若有,請證明;若沒有,請說明理由.
(Ⅰ);(Ⅱ)弦必過定點.
【解析】
試題分析:(Ⅰ)由題意得:直線的方程為
,,設(shè)
,將代入檢驗符合題意,
故滿足題意的直線方程為:
(Ⅱ)解法一:由(Ⅰ)得:圓的方程為:分
設(shè)、、、,
∵點在圓上, ∴,………①
∵點在橢圓上, ∴,………②
聯(lián)立方程①②解得:,同理解得:
∴、 ∵弦過定點,
∴且,即,
化簡得
直線的方程為:,即,
由得直線的方程為:,
∴弦必過定點.
解法二:由(Ⅰ)得:圓的方程為:
設(shè)、,
∵圓上的每一點橫坐標不變,縱坐標縮短為原來的倍可得到橢圓,
又端點與、與的橫坐標分別相等,縱坐標分別同號,
∴、
由弦過定點,猜想弦過定點.
∵弦過定點,∴且,即……① ,,
由①得,
∴弦必過定點.
考點:本題主要考查直線、圓、橢圓等基礎(chǔ)知識的綜合應(yīng)用。
點評:本題以直線、圓、橢圓為載體,綜合考查推理論證能力、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、函數(shù)與方程思想.
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
PQ |
QA1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆山東省濟寧市高二12月質(zhì)檢理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,在平面直角坐標系xOy中,平行于x軸且過點A(3,2)的入射光線 l1
被直線l:y=x反射.反射光線l2交y軸于B點,圓C過點A且與l1, l2都相切.
(1)求l2所在直線的方程和圓C的方程;
(2)設(shè)分別是直線l和圓C上的動點,求的最小值及此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省泉州市高三(下)第二次質(zhì)量檢測數(shù)學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com