如圖,l1、l2是通過某市開發(fā)區(qū)中心O的南北和東西走向的兩條道路,連接M、N兩地的鐵路是一段拋物線弧,它所在的拋物線關(guān)于直線l1對稱.Ml1、l2的距離分別是2 km、4 km,Nl1、l2的距離分別是3 km、9 km.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線弧MN的方程;

(2)該市擬在點(diǎn)O的正北方向建設(shè)一座工廠,考慮到環(huán)境問題,要求廠址到點(diǎn)O的距離大于5 km而不超過8 km,并且鐵路上任意一點(diǎn)到工廠的距離不能小于 km,求該廠離點(diǎn)O的最近距離.(注:工廠視為一個點(diǎn))

解:

(1)分別以l2l1x軸、y軸建立如圖所示的平面直角坐標(biāo)系,

M(2,4),N(3,9).

設(shè)MN所在拋物線的方程為yax2c,則有解得

故所求拋物線弧MN的方程為

yx2(2≤x≤3).

(2)設(shè)拋物線弧上任意一點(diǎn)P(x,x2)(2≤x≤3),

廠址為點(diǎn)A(0,t)(5<t≤8).

t的最小值為.

所以,該廠距離點(diǎn)O的最近距離為6.25 km.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,l1、l2是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于
26
km
,求該校址距點(diǎn)O的最近距離(注:校址視為一個點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省徐州市豐縣修遠(yuǎn)雙語學(xué)校高二(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,l1、l2是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距點(diǎn)O的最近距離(注:校址視為一個點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省連云港市東海高級中學(xué)高三(上)期末數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,l1、l2是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距點(diǎn)O的最近距離(注:校址視為一個點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省常州市西夏墅中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,l1、l2是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距點(diǎn)O的最近距離(注:校址視為一個點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省皖西六校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,l1、l2是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距點(diǎn)O的最近距離(注:校址視為一個點(diǎn)).

查看答案和解析>>

同步練習(xí)冊答案