設(shè){an}是公比大于1的等比數(shù)列,Sn為其前n項和.已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=
1
(log2an+1)•(log2an+2)
,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)根據(jù)等比數(shù)列的前n項和和等差數(shù)列的性質(zhì),列出方程,求出a2,公比,進而求數(shù)列{an}的通項公式;
(Ⅱ)首先寫出數(shù)列{bn}的通項公式,再利用裂項求和即可.
解答: 解:(Ⅰ){an}是公比大于1的等比數(shù)列,設(shè)其公比為q,
∵S3=7,∴a2=2,
∵a1+3,3a2,a3+4構(gòu)成等差數(shù)列,
∴6a2=(a1+3)+(a3+4),即6×2=
a2
q
+3+a2q+4,
2
q
+2q=5
,故q=
1
2
或2,
又q>1,則q=2,從而an=2n-1
(II)bn=
1
n(n+1)
=
1
n
-
1
n+1
,
Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
點評:本題考查了等比數(shù)列的通項公式和數(shù)列的求和,采取裂項的方法求數(shù)列的前n項和,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a=
6
,b=2,B=45°,則角A=(  )
A、30°或150°
B、60°或120°
C、60°
D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i為虛數(shù)單位,若復(fù)數(shù)
z
1+2i
=
5
i
5
,則|z|=(  )
A、1
B、2
C、
5
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1中,AB=AC,D為BC的中點.
(1)求證:A1B∥平面ADC1;
(2)若平面ABC⊥平面BCC1B1,求證:AD⊥DC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
2a2
x
+x(a≠0)
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線x-2y=0垂直,求實數(shù)a的值;
(2)討論函數(shù)f(x)單調(diào)性;
(3)當(dāng)a∈(-∞,0)時,記函數(shù)f(x)的最小值為g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+(1-a)x-lnx(a>-1);
(I)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x0∈(0,+∞),使f(x0)<0,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:方程
x2
a+6
+
y2
a-7
=1表示雙曲線,命題q:圓x2+(y-1)2=9與圓(x-a)2+(y+1)2=16相交.若“p且q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某研究小組在電腦上進行人工降雨摸擬試驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數(shù)據(jù)統(tǒng)計如下:
方式實施地點大雨中雨小雨摸擬試驗總次數(shù)
A4次6次2次12次
B3次6次3次12次
C2次2次8次12次
假設(shè)甲、乙、丙三地實施的人工降雨彼此互不影響.
(1)求甲、乙兩地恰為中雨且丙地為小雨的概率;
(2)考慮到旱情和水土流失,如果甲地恰需中雨即能達到理想狀態(tài),乙地必須是大雨才能達到理想狀態(tài),丙地只要是小雨或中雨就能達到理想狀態(tài),求降雨量達到理想狀態(tài)的地方個數(shù)的概率分布與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-a)(x2-ax+a-1)=0},A中元素之和為3,求a的值.

查看答案和解析>>

同步練習(xí)冊答案