設(shè)點(diǎn)P是雙曲線數(shù)學(xué)公式-數(shù)學(xué)公式=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限的交點(diǎn),其中F1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),若tan∠PF2F1=3,則雙曲線的離心率為________.


分析:先由雙曲線定義和已知求出兩個(gè)焦半徑的長(zhǎng),再由已知圓的半徑為半焦距,知焦點(diǎn)三角形為直角三角形,從而由勾股定理得關(guān)于a、c的等式,求得離心率
解答:解:∵圓x2+y2=a2+b2的半徑r==c,
∴F1F2是圓的直徑,
∴∠F1PF2=90°
依據(jù)雙曲線的定義:|PF1|-|PF2|=2a,
又∵在Rt△F1PF2中,tan∠PF2F1=3,
即|PF1|=3|PF2|,
∴|PF1|=3a,|PF2|=a,
在直角三角形F1PF2
由(3a)2+a2=(2c)2,
得e==
故答案為:
點(diǎn)評(píng):本題考查了雙曲線的定義,雙曲線的幾何性質(zhì),離心率的求法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P是雙曲線-=1上一點(diǎn),F1、F2為它的焦點(diǎn),如果∠PF1F2=75°,∠PF2F1=15°,則雙曲線的離心率是___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P是雙曲線-=1上一點(diǎn),F1、F2為它的焦點(diǎn),如果∠PF1F2=75°,∠PF2F1=15°,則雙曲線的離心率是___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《圓錐曲線》2013年廣東省十二大市高三二模數(shù)學(xué)試卷匯編(理科)(解析版) 題型:填空題

設(shè)點(diǎn)P是雙曲線-=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限的交點(diǎn),其中F1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),若tan∠PF2F1=3,則雙曲線的離心率為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省韶關(guān)市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:填空題

設(shè)點(diǎn)P是雙曲線-=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限的交點(diǎn),其中F1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),若tan∠PF2F1=3,則雙曲線的離心率為   

查看答案和解析>>

同步練習(xí)冊(cè)答案