已知函數(shù)f(x)=ex•g(x),其中g(shù)(x)=ax2-2x-2.
(1)若存在x∈R,使得g(x)>0成立,求實數(shù)a的取值范圍;
(2)求函數(shù)y=f(|sinx|)的值域.
【答案】分析:(1)先判斷g(x)二次項的系數(shù),判斷是否為二次函數(shù),再求函數(shù)的最值求出a,
(2)求出函數(shù)的導數(shù),根據(jù)導數(shù)求函數(shù)的極值和最值,畫出圖表,便于觀察,求出函數(shù)的極值.
解答:解:(1)存在x∈R,使得g(x)>0,
即存在x∈R,使得ax2-2x-2>0,
當a>0時,滿足要求;當a=0時,滿足要求;
當a<0時,△>0,解得
綜上得,(4分)
(2)f(x)=ex•g(x)=ex•(ax2-2x-2)
∴f′(x)=(ex)′•(ax2-2x-2)+ex•(ax2-2x-2)′
=ex•(ax2-2x-2)+ex•(2ax-2)
=ex•[ax2+(2a-2)x-4]
設(shè)|sinx|=t,(0≤t≤1),則轉(zhuǎn)化為求函數(shù)y=f(t),(0≤t≤1)的值域.
當a=0時,f′(x)=-2ex•(x+2)<0,此時函數(shù)f(t)在[0,1]上為減函數(shù),
∴函數(shù)f(t)的值域為[f(1),f(0)],即[(a-4)e,-2]
當a<0時,
此時函數(shù)f(t)在[0,1]上為減函數(shù),
∴函數(shù)f(t)的值域為[f(1),f(0)],即[(a-4)e,-2](6分)
當a>0時,
令f′(x)=0,解得或x=-2(舍).
當x變化時,f(x)與f′(x)的變化情況如下表:

,即0<a≤2時,函數(shù)f(t)在[0,1]上為減函數(shù).
∴函數(shù)f(t)的值域為[f(1),f(0)],即[(a-4)e,-2]
,即a>2時,函數(shù)f(t)在上遞減,在上遞增
函數(shù)f(t)在[0,1]上的最大值為f(0)與f(1)中的較大者
∵f(0)=-2,f(1)=(a-4)e,∴f(1)-f(0)=(a-4)e+2
∴當時,f(1)>f(0),此時ymax=f(1)=(a-4)e;
時,f(1)=f(0),此時ymax=f(0)=f(1)=-2;
時,f(1)<f(0),此時ymax=f(0)=-2(13分)
綜上,當a≤2時,函數(shù)f(|sinx|)的值域為[(a-4)e,-2];
時,函數(shù)f(|sinx|)的值域為;
時,函數(shù)f(|sinx|)的值域為.(14分)
點評:該題考查函數(shù)的求導,和g(x)是否為二次函數(shù)的判斷,注意在解答過程中不要忘記畫圖,在解答過程中容易忽略判斷二次項的系數(shù),該地方是易錯點.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數(shù)x從小到大排成數(shù)列{xn}.求證:數(shù)列{f(xn)}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•西城區(qū)二模)已知函數(shù)f(x)=e|x|+|x|.若關(guān)于x的方程f(x)=k有兩個不同的實根,則實數(shù)k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)已知函數(shù)f(x)=e|lnx|-|x-
1
x
|,則函數(shù)y=f(x+1)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-x(x2+x+1).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案