已知雙曲線 的左、右焦點分別為,以為直徑的圓與雙曲線漸近線的一個交點為,則此雙曲線的方程為(    )

A.  B.  C.  D.

 

【答案】

C

【解析】

試題分析:由條件得:,即,而,漸近線為,上,所以,得,所以雙曲線方程為.

考點:1.雙曲線方程的求法;2.雙曲線的漸近線.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上虞市二模)已知雙曲線的左、右焦點分別為F1,F(xiàn)2,若在雙曲線的右支上存在一點P,使得|PF1|=2|PF2|,則雙曲線的離心率(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的左、右兩個焦點為, ,動點P滿

足|P|+| P |=4.

    (I)求動點P的軌跡E的方程;

    (1I)設(shè)過且不垂直于坐標(biāo)軸的動直線l交軌跡E于A、B兩點,問:終段O

上是否存在一點D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖北省黃岡市羅田一中二輪復(fù)習(xí)備考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線的左、右焦點分別為F1,F(xiàn)2,P是準(zhǔn)線上一點,且PF1⊥PF2,|PF1|•|PF2|=4ab,則雙曲線的離心率是( )
A.
B.
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年浙江省高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知雙曲線的左、右焦點分別為F1,F(xiàn)2,P是準(zhǔn)線上一點,且PF1⊥PF2,|PF1|•|PF2|=4ab,則雙曲線的離心率是( )
A.
B.
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三第二次教學(xué)質(zhì)量考試數(shù)學(xué)理卷 題型:選擇題

已知雙曲線的左、右焦點分別為,過作雙曲線的一條漸近線的垂線,垂足為,若的中點在雙曲線上,則雙曲線的離心率為(   )

A.       B.     C.2                        D.3

 

查看答案和解析>>

同步練習(xí)冊答案