函數(shù)y=3cos2x的最小正周期是( 。
A、π
B、
π
2
C、
π
4
D、2
考點:三角函數(shù)的周期性及其求法
專題:計算題,三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)函數(shù) y=Acos(ωx+φ)的周期的周期T=
ω
,求出結(jié)果.
解答: 解:函數(shù)y=3cos2x的最小正周期是
ω
=
2
=π,
故選:A.
點評:本題考查函數(shù) y=Acos(ωx+φ)的周期的求法,利用周期T=
ω
即可求出結(jié)果,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2-1
=2x+m有實數(shù)解,則實數(shù)m的取值范圍是( 。
A、[-
3
,0})∪[2,+∞)
B、[-
3
,0)∪(0,
3
]
C、(-∞,-
3
]∪[2,+∞)
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-1,g(x)=x+1.
(1)若當(dāng)x∈R時,不等式f(x)≥λg(x)恒成立,求實數(shù)λ的取值范圍;
(2)求函數(shù)h(x)=|f(x)|+λ|g(x)|在區(qū)間x∈[-2,0]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司共有工作人員200人,其中職員160人,中級管理人員30人,高級管理人員10人,現(xiàn)要從中抽取20個人進行身體健康檢查,如果采取分層抽樣的方法,則職員、中級管理人員和高級管理人員各應(yīng)抽取的人數(shù)為(  )
A、16,3,1
B、16,2,2
C、8,15,7
D、12,3,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,甲船以每小時15
2
海里的速度向正北方航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里;當(dāng)甲船航行40分鐘到達A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10
2
海里.問乙船每小時航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(
π
12
+α)=
2
,tan(β-
π
3
)=2
2
,求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律,設(shè)第n個圖案中黑色瓷磚數(shù)為an,白色瓷磚數(shù)為bn,則
a40
b40
=( 。
A、
1
10
B、
1
8
C、
1
6
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球的半徑為2,相互垂直的兩個平面分別截球面得兩個圓,若兩圓的公共弦長為2,則兩圓的圓心距等于C(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x+3)-loga(3-x),a>0且a≠1.
(1)求函數(shù)f(x)的定義域;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若a>1,指出函數(shù)的單調(diào)性,并求函數(shù)f(x)在區(qū)間[0,1]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案