分析 (1)通過Sn>0及平方差公式整理可知$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1(n≥2),從而$\sqrt{{S}_{n-1}}$-$\sqrt{{S}_{n-2}}$=1、$\sqrt{{S}_{n-2}}$-$\sqrt{{S}_{n-3}}$=1、…、$\sqrt{{S}_{2}}$-$\sqrt{{S}_{1}}$=1,累加計(jì)算可知Sn=n2,進(jìn)而利用an=Sn-Sn-1(n≥2)計(jì)算即得結(jié)論;
(2)通過(1)可知Sn=n2,通過放縮、裂項(xiàng)可知$\frac{1}{{S}_{n}}$<$\frac{1}{n-1}$-$\frac{1}{n}$(n≥2),并項(xiàng)相加即得結(jié)論.
解答 (1)解:∵an>0,即Sn>0,
∴Sn-Sn-1=($\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$)($\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$)=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$(n≥2),
即$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1(n≥2),
∴$\sqrt{{S}_{n-1}}$-$\sqrt{{S}_{n-2}}$=1,$\sqrt{{S}_{n-2}}$-$\sqrt{{S}_{n-3}}$=1,…,$\sqrt{{S}_{2}}$-$\sqrt{{S}_{1}}$=1,
累加得:$\sqrt{{S}_{n}}$-$\sqrt{{S}_{1}}$=n-1,
又∵a1=1,
∴$\sqrt{{S}_{n}}$=n,即Sn=n2,
∴an=Sn-Sn-1=n2-(n-1)2=2n-1(n≥2),
又∵a1=1滿足上式,
∴數(shù)列{an}的通項(xiàng)公式an=2n-1;
(2)證明:由(1)可知Sn=n2,
∴$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$(n≥2),
∴Tn≤1+(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)
=1+(1-$\frac{1}{n}$)
=2-$\frac{1}{n}$
<2.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及n項(xiàng)和,考查運(yùn)算求解能力,利用放縮法、裂項(xiàng)法求和是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com