【題目】已知橢圓:的離心率為,短軸長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn),是橢圓的上焦點(diǎn).問(wèn):是否存在直線,使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)
(2)存在直線:或合題意.
【解析】
(1)由短軸長(zhǎng)為求出b,再由離心率為及解得:,,從而得解。
(2)由可得:為線段的中點(diǎn),設(shè)直線方程:,聯(lián)立直線方程與橢圓方程,表示出,,再利用中點(diǎn)坐標(biāo)公式列方程即可求解。
解:(1)∵,,且有,
解得,,
∴橢圓的方程為.
(2)由題可知的斜率一定存在,設(shè)為,設(shè),,
聯(lián)立
∴
∵,∴為線段的中點(diǎn),
∴ ……④
將④代入②解得 ……⑤
將④代入③得 ……⑥
將⑤代入⑥解得 ……⑦
將⑦式代入①式檢驗(yàn)成立,
∴,即存在直線:或合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn).
(1)為坐標(biāo)原點(diǎn),求證:;
(2)設(shè)點(diǎn)在線段上運(yùn)動(dòng),原點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,求四邊形面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某貧困地區(qū)共有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶.為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實(shí)施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬(wàn)元).
(1)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?
(2)根據(jù)這150個(gè)樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果將頻率視為概率,估計(jì)該地區(qū)2017年家庭收入超過(guò)1.5萬(wàn)元的概率;
(3)樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過(guò)2萬(wàn)元,請(qǐng)完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?
超過(guò)2萬(wàn)元 | 不超過(guò)2萬(wàn)元 | 總計(jì) | |
平原地區(qū) | |||
山區(qū) | 5 | ||
總計(jì) |
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的10件產(chǎn)品中,有8件合格品、2件不合格品,合格品與不合格品在外觀上沒(méi)有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計(jì)算:
(1)抽出的2件產(chǎn)品恰好都是合格品的抽法有多少種?
(2)抽出的2件產(chǎn)品至多有1件不合格品的抽法有多少種?
(3)如果抽檢的2件產(chǎn)品都是不合格品,那么這批產(chǎn)品將被退貨,求這批產(chǎn)品被退貨的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)若有兩個(gè)極值點(diǎn)x1,x2(x1<x2),且求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)在R上為偶函數(shù)且在單調(diào)遞減,若時(shí),不等式恒成立,則實(shí)數(shù)m的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中,若僅存在兩個(gè)正整數(shù)使得,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的正六邊形ABCDEF的中心為O,G、H、M、N、P、Q為圓O上的點(diǎn),△GAB,△HBC,△MCD,△NDE,△PEF,△QAF分別是以AB,BC,CD,DE,EF,FA為底邊的等腰三角形,沿虛線剪開(kāi)后,分別以AB,BC,CD,DE,EF,FA為折痕折起△GAB,△HBC,△MCD,△NDE,△PEF,△QAF,使得G、H、M、N、P、Q重合,得到六棱錐.當(dāng)正六邊形ABCDEF的邊長(zhǎng)變化時(shí),所得六棱錐體積(單位:cm3)的最大值為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com