(本小題滿分14分)
      橢圓短軸的左右兩個(gè)端點(diǎn)分別為A,B,直線與x軸、y軸分別交于兩點(diǎn)E,F(xiàn),交橢圓于兩點(diǎn)C,D。
(I)若,求直線的方程;
(II)設(shè)直線AD,CB的斜率分別為,若,求k的值。
(1)(2)k="3"
(I)設(shè)

                             …………2分
由已知
              …………4分
所以                             …………5分
所以,                               …………6分
符合題意,
所以,所求直線l的方程為…………7分
(II),
所以                                                   …………8分
平方得                                              …………9分
代入上式,
計(jì)算得…………12分
所以                …………13分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231412077871668.gif" style="vertical-align:middle;" />
所以k="3" …………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在直角坐標(biāo)系中,已知橢圓的離心率,左、右兩個(gè)焦點(diǎn)分別為、。過(guò)右焦點(diǎn)且與軸垂直的直線與橢圓相交、兩點(diǎn),且
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為,下頂點(diǎn)為,動(dòng)點(diǎn)滿足,試求點(diǎn)的軌跡方程,使點(diǎn)關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.
                                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓經(jīng)過(guò)點(diǎn)M(1,),斜率為的直線經(jīng)過(guò)橢圓的下頂點(diǎn)D和右焦點(diǎn)F,A、B為橢圓上不同于M的兩點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線AB過(guò)點(diǎn)F且不與坐標(biāo)軸垂直,求線段AB的中垂線與軸的交點(diǎn)的橫坐標(biāo)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,橢圓經(jīng)過(guò)點(diǎn),離心率。

(l)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為不重合),則直線軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線過(guò)橢圓的左焦點(diǎn)和一個(gè)頂點(diǎn),該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓,它的離心率為,與直線x+y-1=0相交于兩點(diǎn)M、N,且以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn).求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的離心率為,過(guò)右焦點(diǎn)且斜率為的直線與相交于兩點(diǎn).若,則
A.1B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知橢圓的左、右準(zhǔn)線分別為l1、l2,且分別交x軸于CD兩點(diǎn),從l1上一點(diǎn)A發(fā)出一條光線經(jīng)過(guò)橢圓的左焦點(diǎn)Fx軸反射后與l2交于點(diǎn)B,若,且,則橢圓的離心率等于_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題


請(qǐng)閱讀以下材料,然后解決問(wèn)題:
①設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為a,短半軸長(zhǎng)為b,則橢圓的面積為ab
②我們把由半橢圓C1+="1" (x≤0)與半橢圓C2+="1" (x≥0)合成的曲線稱作“果圓”,其中=+,a>0,b>c>0
如右上圖,設(shè)點(diǎn)F0F1,F2是相應(yīng)橢圓的焦點(diǎn),A1A2B1,B2是“果圓”與xy軸的交點(diǎn),若△F0 F1 F2是邊長(zhǎng)為1的等邊三角形,則上述“果圓”的面積為                               。

查看答案和解析>>

同步練習(xí)冊(cè)答案