分析 (1)由它與4之和大于10的x滿足x+4>10,解得:6<x≤10,所求概率為P=$\frac{10-6}{10}$=$\frac{2}{5}$;
(2)事件對應(yīng)的集合是Ω={(x,y)|0≤x≤10,0≤y≤10},對應(yīng)的面積是sΩ=100,事件對應(yīng)的集合是A={(x,y)|0≤x≤10,0≤y≤10,x+y>9},求得陰影部分的面積,由幾何概型的概率公式,根據(jù)等可能事件的概率得到P=$\frac{{S}_{A}}{{S}_{Ω}}$=$\frac{119}{200}$.
解答 解:(1)在區(qū)間[0,10]中任意取一個(gè)數(shù)x,
則它與4之和大于10的x滿足x+4>10,解得:6<x≤10,
∴所求概率為P=$\frac{10-6}{10}$=$\frac{2}{5}$;
(2)試驗(yàn)發(fā)生包含的事件是在區(qū)間[0,10]上任取兩個(gè)數(shù)x和y,
事件對應(yīng)的集合是Ω={(x,y)|0≤x≤10,0≤y≤10}
對應(yīng)的面積是sΩ=100,
滿足條件的事件是x+y>9,事件對應(yīng)的集合是A={(x,y)|0≤x≤10,0≤y≤10,x+y>9},
如圖對應(yīng)的圖形(陰影部分)的面積是sA=100-$\frac{1}{2}$×9×9=$\frac{119}{2}$,
∴根據(jù)等可能事件的概率得到P=$\frac{{S}_{A}}{{S}_{Ω}}$=$\frac{119}{200}$;
它們之和大于9的概率$\frac{119}{200}$.
點(diǎn)評 本題主要考查幾何概型的概率計(jì)算,根據(jù)條件作出對應(yīng)的平面區(qū)域,是解決本題的關(guān)鍵,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n}{n+1}$ | B. | $\frac{2n}{n+1}$ | C. | $\frac{n-1}{n}$ | D. | $\frac{2n-2}{n}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{FD}$ | B. | $\overrightarrow{AE}$ | C. | $\overrightarrow{CD}$ | D. | $\overrightarrow{BF}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-x3,x∈R | B. | y=x2,x∈R | C. | y=x,x∈R | D. | $y={({\frac{1}{2}})^x}$,x∈R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 6 | C. | 8 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com