11.根據(jù)下列不等式,確定正數(shù)a的取值范圍.
①a0.4<a0.5a>1;
②a5<10<a<1;
③a0.4>a0.50<a<1;
④${log}_{{a}^{3}}$<${log}_{{a}^{5}}$a>1;
⑤${log}_{{a}^{0.3}}$>${log}_{{a}^{0.5}}$0<a<1.

分析 根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性即可判斷.

解答 解:f(x)=ax(a>0,且a≠1),當a>1時,函數(shù)f(x)為增函數(shù),當0<a<1時,函數(shù)為減函數(shù),
①a0.4<a0.5,a>1;
②a5<1=a0,0<a<1;
③a0.4>a0.5,0<a<1;、
f(x)=logax(a>0,且a≠1),當a>1時,函數(shù)f(x)為增函數(shù),當0<a<1時,函數(shù)為減函數(shù),
所以④${log}_{{a}^{3}}$<${log}_{{a}^{5}}$,a>1;
⑤${log}_{{a}^{0.3}}$>${log}_{{a}^{0.5}}$,0<a<1.
故答案為:①a>1,②0<a<1,③0<a<1,④a>1,⑤0<a<1.

點評 本題考查了指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.cos(α+β)=cosαcosβ-sinαsinβ(C(α+β)
sin(α+β)=sinαcosβ+cosαsinβ(S(α+β)
sin(α-β)=sinαcosβ-cosαsinβ(S(α-β)
tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$(T(α+β)
tan(α-β)=$\frac{tanα-tanβ}{1+tanαtanβ}$(T(α-β)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知:α∥β,點P是平面α,β外一點,從點P引三條不共面的射線PA,PB,PC,與平面α分別相交于點A,B,C,與平面β分別相交于A′,B′,C′,求證:△ABC∽△A′B′C′.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分別是A1B1,B1C1的中點,BC=CA=CC1,求BM與AN所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=ax3+bsinx+5,且f(7)=9,則f(-7)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設集合A={x|a-2<x<a+2},B={x|$\frac{2x-1}{x+2}$<1},若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知M(-2,1),N(2,3),則以MN為斜邊的直角三角形的直角頂點P的軌跡方程是(  )
A.x2+(y-2)2=5B.x2+(y-2)2=15
C.x2+(y-2)2=5(x≠2y-4)D.x2+(y-2)2=15(x≠2y-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-4x-5,x∈[1,3],判斷其是否存在反函數(shù),若存在,求出反函數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知tan2x-tanx-6=0,且x為第四象限角,試求:
(1)sinxcos(π-x)的值; 
(2)2cosx-sinx的值.

查看答案和解析>>

同步練習冊答案