基尼系數(shù)是衡量一個國家貧富差距的標準.圖中橫軸OH表示人口(按收入由低到高分組)的累積百分比,縱軸OM表示收入的累積百分比,弧線OL(洛倫茲曲線)與對角線之間的面積A叫做“不平等面積”,折線段OHL與對角線之間的面積(A+B)叫做“完全不平等面積”,不平等面積與完全不平等面積之比等于基尼系數(shù),則:
(1)當洛倫茲曲線為對角線時,社會達到“共同富!边@是社會主義國家的目標,則此時的基尼系數(shù)等于
 

(2)為了估計目前我國的基尼系數(shù),統(tǒng)計得到洛倫茲曲線后,采用隨機模擬方法:隨機產(chǎn)生兩個數(shù)組成點(a,b)(其中a,b∈[0,100])共1000個,其中恰好有300個點恰好落在B區(qū)域中,則據(jù)此估計該基尼系數(shù)為:
 
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用,概率與統(tǒng)計
分析:(1)由題意可得基尼系數(shù)=
A
A+B
,當洛倫茲曲線為對角線時A=0,可得基尼系數(shù)為0;
(2)由概率的知識可得B=300,A=200,可得答案.
解答: 解:(1)由題意可得基尼系數(shù)=
A
A+B

當洛倫茲曲線為對角線時A=0,
故基尼系數(shù)為0
(2)由概率的知識可得B=300,A=
1000
2
-300
=200,
A
A+B
=
200
500
=0.4,
∴該基尼系數(shù)為0.4
故答案為:0;0.4
點評:本題考查新定義,涉及概率統(tǒng)計,得出A,B是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),當x,y∈R時,恒有f(x+y)=f(x)+f(y),當x>0時,f(x)>0,試判斷f(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓心在直線x+y=0上,且通過點(2,0),(0,-4)的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過兩點A(1,1),B(2,3)的直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an]的前n項和為Sn,若S3=2,S6=6,則a10+a11+a12=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:a≠0,f(x)=x3+ax2-a2x-1,g(x)=ax2-x-1,若y=f(x)與g(x)的圖象有三個不同交點,則a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax2+2x+a+3,滿足f(1+x)=f(1-x),則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
x
+x23的展開式中的常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在某種信息傳輸過程中,用4個數(shù)字的一個排列(數(shù)字允許重復(fù))表示一個信息,不同排列表示不同信息.每個位置所用數(shù)字只有0和1,設(shè)與信息0110有X個對應(yīng)位置上的數(shù)字相同,則X的均值為(  )
A、1B、4C、3D、2

查看答案和解析>>

同步練習冊答案