若函數(shù)f(x)=3x-x3在區(qū)間(a2-12,a)上有最小值,則實(shí)數(shù)a的取值范圍是( 。
A、(-1,
11
)
B、(-1,4)
C、(-1,2]
D、(-1,2)
分析:求函數(shù)f(x)=3x-x3導(dǎo)數(shù),研究其最小值取到位置,由于函數(shù)在區(qū)間(a2-12,a)上有最小值,故最小值點(diǎn)的橫坐標(biāo)是集合(a2-12,a)的元素,由此可以得到關(guān)于參數(shù)a的等式,解之求得實(shí)數(shù)a的取值范圍
解答:解:由題 f'(x)=3-3x2,
令f'(x)>0解得-1<x<1;令f'(x)<0解得x<-1或x>1
由此得函數(shù)在(-∞,-1)上是減函數(shù),在(-1,1)上是增函數(shù),在(1,+∞)上是減函數(shù)
故函數(shù)在x=-1處取到極小值-2,判斷知此極小值必是區(qū)間(a2-12,a)上的最小值
∴a2-12<-1<a,解得-1<a<
11

又當(dāng)x=2時(shí),f(2)=-2,故有a≤2
綜上知a∈(-1,2]
故選C
點(diǎn)評(píng):本題考查用導(dǎo)數(shù)研究函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的最值是導(dǎo)數(shù)作為數(shù)學(xué)中工具的一個(gè)重要運(yùn)用,要注意把握其作題步驟,求導(dǎo),確定單調(diào)性,得出最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=3x的反函數(shù)是y=f-1(x),則f-1(3)的值是( 。
A、1
B、0
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=3x-x3在區(qū)間(a-1,a)上有最小值,則實(shí)數(shù)a的取值范圍是
(-1,0)
(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,y=x
1
2
,y=(x-1)2,y=x3中有三個(gè)是增函數(shù);
②若logm3<logn3<0,則0<n<m<1;
③若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點(diǎn)A(1,0)對(duì)稱;
④若函數(shù)f(x)=3x-2x-3,則方程f(x)=0有2個(gè)實(shí)數(shù)根,
其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+ax+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求a,b應(yīng)滿足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A、B,點(diǎn)M為函數(shù)圖象上的另一點(diǎn),且其縱坐標(biāo)yM>3,求點(diǎn)M到直線AB距離的最小值及取得最小值時(shí)M點(diǎn)的坐標(biāo);
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)的有奇數(shù)個(gè)”是否正確?若正確,給出證明,并舉一例;若不正確,請(qǐng)舉一反例說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•楊浦區(qū)一模)若函數(shù)f(x)=3x的反函數(shù)為f-1(x),則f-1(1)=
0
0

查看答案和解析>>

同步練習(xí)冊(cè)答案