函數(shù)f(x)=sin(2x+
π
4
),x∈[0,
π
2
],則函數(shù)f(x)的值域為
 
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:根據(jù)x的范圍求得2x+
π
4
的范圍,再根據(jù)正弦函數(shù)的定義域和值域求得該函數(shù)的值域.
解答: 解:由于x∈[0,
π
2
],∴2x+
π
4
∈[
π
4
4
],故當(dāng)2x+
π
4
=
4
時,函數(shù)取得最小值為-
2
2
,
當(dāng)2x+
π
4
=
π
2
時,函數(shù)取得最大值為1,故函數(shù)的值域為[-
2
2
,1],
故答案為:[-
2
2
,1].
點(diǎn)評:本題主要考查正弦函數(shù)的定義域和值域,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+a2+a3=3,a18+a19+a20=87,則此數(shù)列前20項的和S20=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(1+x2)+4的導(dǎo)數(shù)是( 。
A、2xsin(1+x2
B、-sin(1+x2
C、2cos(1+x2
D、-2xsin(1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=
1
5
π
2
≤α≤
4
,求cos2α-sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的一個頂點(diǎn)A(3,-1),∠B被y軸平分,∠C被直線y=x平分,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),且
m
n

(1)將y表示為x的函數(shù)f(x),并求f(x)在區(qū)間[0,
π
2
]上的最大值和最小值;
(2)已知a、b、c分別為△ABC的三個內(nèi)角A、B、C對應(yīng)的邊,若f(
A
2
)=3,且a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域:
(1)y=x2-2x-3;
(2)y=
1
x-5
;
(3)y=
3x2+2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知alog45=1.
(1)求5a+5-a的值;
(2)求使不等式a2x-7>a5-x成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x≥0
x+3y≥4
3x+y≤4
所表示的平面區(qū)域被直線3kx-3y+4=0分為面積相等的兩部分,則k的值是(  )
A、
7
3
B、
3
7
C、
4
3
D、
3
4

查看答案和解析>>

同步練習(xí)冊答案