函數(shù)y=cos(1+x2)+4的導(dǎo)數(shù)是(  )
A、2xsin(1+x2
B、-sin(1+x2
C、2cos(1+x2
D、-2xsin(1+x2
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)的導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)即可.
解答: 解:y=-sin(1+x2)•2x=-2xsin(1+x2),
故選:D
點(diǎn)評:本題主要考查了復(fù)合函數(shù)的求導(dǎo),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x
1
2
,x∈Z
f([x]),x∉Z
,其中[x]表示不大于x的最大整數(shù),如[1.2]=1,則f(4.8)=( 。
A、8B、4C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|-2<x<4},B={y|y=x+1,x∈A},則A∩B=( 。
A、∅
B、{x|1<x<4}
C、{x|-2<x<5}
D、{x|0≤x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)奇函數(shù)f(x)在[-1,1]上是增函數(shù),且f(-1)=-1,若對所有的x∈[-1,1]及任意的a∈[-1,1]都滿足f(x)≤t2-2at+1,則t的取值范圍是( 。
A、[-2,2]
B、{t|t≤-
1
2
或t
1
2
或=0}
C、[-
1
2
,
1
2
]
D、{t|t≤-2或t≥2或t=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A,B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=16x的焦點(diǎn)為(  )
A、(0,2)
B、(4,0)
C、(
2
,0)
D、(2
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩圓x2+y2-1=0與x2+y2+3x+9y+2=0的公共弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2x+
π
4
),x∈[0,
π
2
],則函數(shù)f(x)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)10cos270°+4sin0°+9tan0°+15cos360°;
(2)sin2
π
3
+cos4
2
-tan2
π
3

查看答案和解析>>

同步練習(xí)冊答案