已知,其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=
(A)1-2i (B)1+2i (C)2-i (D)2+i
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
. |
x\~(a1)(a2)(a3)…(an-1)(an) |
. |
2\~(-1)(3)(-2)(1) |
1 |
1-ak |
. |
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n) |
. | ||||||||||
t\~(
|
lim |
n→∞ |
dn |
dn+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知 函數(shù)f(x)=的圖像關(guān)于原點(diǎn)對(duì)稱,其中m,n為實(shí)常數(shù)。
求m , n的值;
試用單調(diào)性的定義證明:f (x) 在區(qū)間[-2, 2] 上是單調(diào)函數(shù);
[理科做] 當(dāng)-2≤x≤2 時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
給出下列四個(gè)命題:
① 是的充要條件;
② 已知A、B是雙曲線實(shí)軸的兩個(gè)端點(diǎn),M,N是雙曲線上關(guān)于x軸對(duì)稱的兩點(diǎn),直線AM,BN的斜率分別為k1,k2,且的最小值為2,則雙曲線的離心率e=;
③ 取一根長度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1 m的概率是;
④ 一個(gè)圓形紙片,圓心為O,F為圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于P,則P的軌跡是橢圓。
其中真命題的序號(hào)是 。(填上所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
給出下列四個(gè)命題:
① 是的充要條件;
② 已知A、B是雙曲線實(shí)軸的兩個(gè)端點(diǎn),M,N是雙曲線上關(guān)于x軸對(duì)稱的兩點(diǎn),直線AM,BN的斜率分別為k1,k2,且的最小值為2,則雙曲線的離心率e=;
③ 取一根長度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1 m的概率是;
④ 一個(gè)圓形紙片,圓心為O,F為圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于P,則P的軌跡是橢圓。
其中真命題的序號(hào)是 。(填上所有真命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com