精英家教網 > 高中數學 > 題目詳情
已知以下四個命題:
①如果x1,x2是一元二次方程的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
②若f(x)是奇函數,則f(0)=0;
③若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},則P∩Q={x|x=15m-8,m∈N+}
④若函數f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
(填上你認為正確的序號).
分析:①對a分類討論,求解一元二次不等式,判斷它的正誤;②f(x)是奇函數,在原點有定義則f(0)=0;③用列舉法求出P∩Q,然后在歸納出一般式;④根據單調性的定義和同向不等式具有可加性即可得到結論.
解答:解:①若a>0,則不等式ax2+bx+c<0的解集為{x|x1<x<x2};
若a<0,則不等式ax2+bx+c<0的解集為{x|x<x1或x>x2};故①錯;
②如f(x)=
1
x
是奇函數,但是在=0處無意義,故②錯;
③∵集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},則P∩Q={7,22,52,…}={x|x=15m-8,m∈N+}
∴③正確;
④∵函數f(x)在(-∞,+∞)上遞增,且a+b≥0,
∴a≥-b,∴f(a)≥f(-b),
同理f(b)≥f(-a),跟據同向不等式具有可加性,得f(a)+f(b)≥f(-a)+f(-b).
故④正確.
故答案為③④.
點評:此題是個基礎題.綜合考查一元二次不等式的解法,函數的奇偶性,集合的交集運算,函數的單調性的應用等基礎知識.考查學生分析解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知以下四個命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2}.
②若
x-1x-2
≤0
,則(x-1)(x-2)≤0.
③“若M={-1,0,1},則x2-2x+m>0的解集是實數集R”的逆否命題.
④若函數f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
(填上你認為正確的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知以下四個命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
②若
x-1x-2
≤0
,則(x-1)(x-2)≤0;
③“若m>2,則x2-2x+m>0的解集是實數集R”的逆否命題;
④定義在R的函數f(x),且對任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個周期.其中為真命題的是
 
(填上你認為正確的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知以下四個命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為
{x|x1<x<x2};
②“若m>2,則x2-2x+m>0的解集是實數集R”的逆否命題;
③若
x-1
x-2
≤0,則(x-1)(x-2)≤0.
④直線y=1與曲線y=x2-|x|+a有四個交點,則a的取值范圍是(1,
5
4
)

其中為真命題的是
 
(填上你認為正確的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知以下四個命題( 。
①命題“若x=2則x2=4”的逆否命題;
②“a=
π
4
”是“sin2a=1”的充要條件
③命題p:?x∈R,x-x+1<0,則?p:?x∈R,x-x+1>0;
④若p∧q為假,p∨q為真;則p、q有且僅有一個是真命題;
其中正確的是( 。

查看答案和解析>>

同步練習冊答案