【題目】設等差數(shù)列的前項和為, ,對每個正整數(shù),之間插入3,得到一個新的數(shù)列.

1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和為.

【答案】12

【解析】試題分析:1根據(jù)等差數(shù)列, 列出關于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;〔2只要把在數(shù)列的第幾項確定,而其余的項都是3,那么確定了, 在之間插入,在之間插入,在之間插入, ,在之間插入.數(shù)列中的項排在第 項,故,利用分組求和法結合等比數(shù)列的求和公式可得結果.

試題解析:(1)由,解得

所以, .

2)只要把ak=3k+2在數(shù)列的第幾項確定,而其余的項都是3,那么確定了,

由題意知,在之間插入,在之間插入,在之間插入, ,在之間插入.

所以, 數(shù)列中的項3k+2排在第(k+30+31+32+…+3k-2)= 項,

所以,當

注意到,Tn可改寫成

,且時,

綜合,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣|x|+2a﹣1(a為實常數(shù)).

(1)若a=1,求f(x)=3的解;

(2)求f(x)在區(qū)間[1,2]的最小值為g(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實數(shù)a的取值范圍為(
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ ]
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設{an}是等差數(shù)列,其首項a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對任意的等差數(shù)列{an},總存在兩個“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)列{an},若an+2﹣an=d(d是與n無關的常數(shù),n∈N*),則稱數(shù)列{an}叫做“弱等差數(shù)列”,已知數(shù)列{an}滿足:a1=t,a2=s且an+an+1=an+b對于n∈N*恒成立,(其中t,s,a,b都是常數(shù)).
(1)求證:數(shù)列{an}是“弱等差數(shù)列”,并求出數(shù)列{an}的通項公式;
(2)當t=1,s=3時,若數(shù)列{an}是等差數(shù)列,求出a、b的值,并求出{an}的前n項和Sn;
(3)若s>t,且數(shù)列{an}是單調遞增數(shù)列,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《張丘建算經(jīng)》是公元5世紀中國古代內容豐富的數(shù)學著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx(ω>0),f(x)的圖象相鄰兩條對稱軸的距離為
(1)求f( )的值;
(2)將f(x)的圖象上所有點向左平移m(m>0)個長度單位,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個對稱中心為( ,0),當m取得最小值時,求g(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在三棱錐中,已知底面是以為斜邊的等腰直角三角形,且側棱長,則三棱錐的外接球的表面積等于__________

【答案】

【解析】三棱錐的外接球的球心在SM上(M為AB 中點),球半徑設為R,則

點睛涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.

型】填空
束】
16

【題目】已知斜率的直線過拋物線的焦點,且與拋物線相交于兩點,分別過點、若作拋物線的兩條切線相交于點,則的面積為__________

查看答案和解析>>

同步練習冊答案