【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱(chēng){an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對(duì)任意的等差數(shù)列{an},總存在兩個(gè)“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

【答案】
(1)解:當(dāng)n≥2時(shí),an=Sn﹣Sn1=2n﹣2n1=2n1,

當(dāng)n=1時(shí),a1=S1=2.

當(dāng)n=1時(shí),S1=a1

當(dāng)n≥2時(shí),Sn=an+1

∴數(shù)列{an}是“H”數(shù)列


(2)解:Sn= =

對(duì)n∈N*,m∈N*使Sn=am,即 ,

取n=2時(shí),得1+d=(m﹣1)d,解得

∵d<0,∴m<2,

又m∈N*,∴m=1,∴d=﹣1


(3)證明:設(shè){an}的公差為d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1

對(duì)n∈N*,bn+1﹣bn=﹣a1,

cn=(n﹣1)(a1+d),

對(duì)n∈N*,cn+1﹣cn=a1+d,

則bn+cn=a1+(n﹣1)d=an,且數(shù)列{bn}和{cn}是等差數(shù)列.

數(shù)列{bn}的前n項(xiàng)和Tn= ,

令Tn=(2﹣m)a1,則

當(dāng)n=1時(shí),m=1;當(dāng)n=2時(shí),m=1.

當(dāng)n≥3時(shí),由于n與n﹣3的奇偶性不同,即n(n﹣3)為非負(fù)偶數(shù),m∈N*

因此對(duì)n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}為H數(shù)列.

數(shù)列{cn}的前n項(xiàng)和Rn= ,

令cm=(m﹣1)(a1+d)=Rn,則m=

∵對(duì)n∈N*,n(n﹣3)為非負(fù)偶數(shù),∴m∈N*

因此對(duì)n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}為H數(shù)列.

因此命題得證


【解析】(1)利用“當(dāng)n≥2時(shí),an=Sn﹣Sn1 , 當(dāng)n=1時(shí),a1=S1”即可得到an , 再利用“H”數(shù)列的意義即可得出.(2)利用等差數(shù)列的前n項(xiàng)和即可得出Sn , 對(duì)n∈N* , m∈N*使Sn=am , 取n=2和根據(jù)d<0即可得出;(3)設(shè){an}的公差為d,構(gòu)造數(shù)列:bn=a1﹣(n﹣1)a1=(2﹣n)a1 , cn=(n﹣1)(a1+d),可證明{bn}和{cn}是等差數(shù)列.再利用等差數(shù)列的前n項(xiàng)和公式及其通項(xiàng)公式、“H”的意義即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)= ,且對(duì)任意的x∈R都有f(x+1)=﹣ ,若在區(qū)間[﹣5,1]上函數(shù)g(x)=f(x)﹣mx+m恰有5個(gè)不同零點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.[﹣ ,﹣
B.(﹣ ,﹣ ]
C.(﹣ ,0]
D.(﹣ ,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對(duì)理科題的概率均為,答對(duì)文科題的概率均為,若每題答對(duì)得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為坐標(biāo)原點(diǎn),橢圓C1 + =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e1;雙曲線C2 =1的左、右焦點(diǎn)分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.

(1)求C1、C2的方程;
(2)過(guò)F1作C1的不垂直于y軸的弦AB,M為AB的中點(diǎn),當(dāng)直線OM與C2交于P,Q兩點(diǎn)時(shí),求四邊形APBQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)方體ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;

(1)求出異面直線AC'和BD所成角的余弦值;
(2)找出AC'與平面D'DBB'的交點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B、C、D為圓O上的四點(diǎn),直線DE為圓O的切線,AC∥DE,AC與BD相交于H點(diǎn).

(1)求證:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同 ,為橢圓的左、右焦點(diǎn)為橢圓上任意一點(diǎn),面積的最大值為1

1求橢圓的方程;

2直線交橢圓,兩點(diǎn)

i若直線的斜率分別為,,求證直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

ii若直線的斜率時(shí)直線斜率的等比中項(xiàng),求△面積的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足a1=1,an+1=2an+1(n∈N*)
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案