已知
a
=(1,2)
b
=(-3,2)
,
(1)求
a
-3
b
的坐標(biāo);
(2)當(dāng)k為何值時,k
a
+
b
a
-3
b
垂直?.
(3)設(shè)向量
a
b
的夾角為θ,求cos2θ的值.
分析:(1)利用向量的坐標(biāo)運(yùn)算即可求得答案;
(2)可求得k
a
+
b
a
-3
b
的坐標(biāo),利用(k
a
+
b
)•(
a
-3
b
)=0即可求得k的值;
(3)利用向量的坐標(biāo)運(yùn)算可求得向量
a
b
的夾角θ的余弦,再利用余弦函數(shù)的二倍角公式即可求得cos2θ的值.
解答:解:(1)
a
-3
b
=(1,2)-3(-3,2)=(10,-4)…4分
(2)k
a
+
b
=k(1,2)+(-3,2)=(k-3,2k+2),
a
-3
b
=(1,2)-3(-3,2)=(10,-4)…6分
由(k
a
+
b
)⊥(
a
-3
b
)得:
(k
a
+
b
)•(
a
-3
b
)=10(k-3)-4(2k+2)=2k-38=0,
k=19…8分
(3)依題意,cosθ=
1
65
,…10分
∴cos2θ=2cos2θ-1=-
63
65
…12分
點(diǎn)評:本題考查向量的坐標(biāo)運(yùn)算,考查數(shù)量積判斷兩個平面向量的垂直關(guān)系及二倍角的余弦,考查分析與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2)
,
b
=(-3,2)
,當(dāng)k為何值時,
(1)k
a
+
b
a
-3
b
垂直?
(2)k
a
+
b
a
-3
b
平行?平行時它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={1,2,3,4,5,6,7,8,9},B={1,2,3},C={3,4,5,6},則A∩(B∪C)=
{1,2,3,4,5,6}
{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2)
,
b
=(-3,2)
,
(1)求
a
-3
b

(2)當(dāng)k
a
+
b
a
-3
b
平行時,求實(shí)數(shù)k的值.它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)對于正整數(shù)a,b,存在唯一一對整數(shù)q和r,使得a=bq+r,0≤r<b.特別地,當(dāng)r=0時,稱b能整除a,記作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),試求q,r的值;
(Ⅱ)求證:不存在這樣的函數(shù)f:A→{1,2,3},使得對任意的整數(shù)x1,x2∈A,若|x1-x2|∈{1,2,3},則f(x1)≠f(x2);
(Ⅲ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的個數(shù)),且存在a,b∈B,b<a,b|a,則稱B為“和諧集”.求最大的m∈A,使含m的集合A的有12個元素的任意子集為“和諧集”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={1,2,3},B={1,2}.定義集合A、B之間的運(yùn)算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},則集合A*B的所有子集的個數(shù)為
16
16

查看答案和解析>>

同步練習(xí)冊答案