分析 根據(jù)集合A中元素x2+x+1恒大與0,而集合B中元素只有y+1>0,說明A中的-x,-x-1有可能與B中的-y,-$\frac{y}{2}$分別相等,分類討論后有一種情況與題意不符,只有另外一種情況,求出此時(shí)x和y的值,則x2+y2的值可求.
解答 解:由A={x2+x+1,-x,-x-1},B={-y,-$\frac{y}{2}$,y+1},且A=B,
因?yàn)閤2+x+1=${(x+\frac{1}{2})}^{2}$+$\frac{3}{4}$>0,且-y<0,-$\frac{y}{2}$<0.
所以只有x2+x+1=y+1.
若$\left\{\begin{array}{l}{-x=-y}\\{-x-1=-\frac{y}{2}}\end{array}\right.$,解得x=y=-2,與y∈R+不符.
若$\left\{\begin{array}{l}{-x=-\frac{y}{2}}\\{-x-1=-y}\end{array}\right.$,解得x=1,y=2;
代入集合A,B中驗(yàn)證滿足集合元素的互異性.
此時(shí)x2+y2=12+22=5,
故答案為:5.
點(diǎn)評(píng) 本題考查了集合相等的概念,考查了集合中元素的特性,考查了分類討論的數(shù)學(xué)思想方法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | N=2 | B. | N=-2 | C. | N<-2 | D. | N>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一定小于零 | B. | 可能等于零 | C. | 一定大于零 | D. | 正負(fù)均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com