(2012•寶山區(qū)一模)若奇函數(shù)y=f(x)的定義域?yàn)閇-4,4],其部分圖象如圖所示,則不
等式f(x)ln(2x-1)<0的解集是
(1,2)
(1,2)
分析:結(jié)合圖象利用奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)可得f(x)>0的解集、f(x)<0的解集,再求出ln(2x-1)>0的解集以及 ln(2x-1)<0的解集,不等式即
f(x)>0
ln(2x-1)<0

f(x)<0
ln(2x-1)>0
,由此求得原不等式的解集.
解答:解:由圖象并利用奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的性質(zhì)可得,f(x)>0的解集為(-2,0)∪(2,4),f(x)<0的解集為(-4,-2)∪(0,2).
 由于不等式ln(2x-1)>0的解集為 (1,+∞),不等式ln(2x-1)<0的解集為 (0,1).
由f(x)ln(2x-1)<0可得 
f(x)>0
ln(2x-1)<0
 或
f(x)<0
ln(2x-1)>0

解得 x∈∅,或 1<x<2,故不等式f(x)ln(2x-1)<0的解集是(1,2),
故答案為 (1,2).
點(diǎn)評(píng):本題主要考查奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),體現(xiàn)了分類(lèi)討論、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)兩個(gè)圓錐有等長(zhǎng)的母線,它們的側(cè)面展開(kāi)圖恰好拼成一個(gè)圓,若它們的側(cè)面積之比為1:2,則它們的體積比是
1:
10
1:
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)設(shè)f(x)是定義在R上的奇函數(shù),且滿足f(x+3)=f(x),f(1)>1,f(2)=
2m-3
m+1
,則實(shí)數(shù)m的取值范圍是
(-1,
2
3
(-1,
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)已知函數(shù)f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差數(shù)列.
(1)求數(shù)列{an}(n∈N*)的通項(xiàng)公式;
(2)設(shè)g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整數(shù)解的個(gè)數(shù),求g(k);
(3)記數(shù)列{
12
an
}
的前n項(xiàng)和為Sn,是否存在正數(shù)λ,對(duì)任意正整數(shù)n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)已知等差數(shù)列{an},a2=-2,a6=4,則a4=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)方程x2-2x+5=0的復(fù)數(shù)根為
1±2i
1±2i

查看答案和解析>>

同步練習(xí)冊(cè)答案