4.如圖,網(wǎng)格紙上小正方形的邊長為1,圖中粗線畫出的是某零件的三視圖,該零件由一個棱長為4的正方體毛坯切削得到,則切削掉部分的體積與原毛坯體積的比值為(  )
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{5}{12}$D.$\frac{7}{12}$

分析 由已知中的三視圖,可知該幾何體是由一個棱長為4的正方體毛坯切削得到,該幾何體是由兩個正棱臺對接可得,求出原來正方體的體積和該該幾何體的體積,可得切削掉部分的體積與原毛坯體積的比值.

解答 解:由題意,該幾何體是由一個棱長為4的正方體毛坯切削得到,該幾何體是由兩個全等的正棱臺對接可得,

正棱臺的下底為正方形,邊長為4,上底為正方形,邊長為2,高h(yuǎn)為2,
可得:正棱臺的體積V1=$\frac{1}{3}$h(S+S+$\sqrt{{S}_{下}•{S}_{上}}$)=$\frac{1}{3}×2$×(20+$\sqrt{16×4}$)=$\frac{56}{3}$
∴該幾何體的體積V=$\frac{112}{3}$
棱長為4的正方體的體積V=4×4×4=64.
切削掉部分的體積V′=64-$\frac{112}{3}$=$\frac{80}{3}$.
切削掉部分的體積與原毛坯體積的比值,即$\frac{80}{3}:64$=5:12,即$\frac{5}{12}$.
故選C

點(diǎn)評 本題考查了正方體的體積計(jì)算和正棱臺的體積的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義在(-1,1)上的函數(shù)f(x)滿足:$f(x)-f(y)=f({\frac{x-y}{1-xy}})$,當(dāng)x∈(-1,0)時,有f(x)>0,且$f({-\frac{1}{2}})=1$.設(shè)$m=f({\frac{1}{5}})+f({\frac{1}{11}})+…+f({\frac{1}{{{n^2}+n-1}}}),\;\;n≥2,n∈{N^*}$,則實(shí)數(shù)m與-1的大小關(guān)系為( 。
A.m<-1B.m=-1C.m>-1D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的所有棱長之和為27+$\sqrt{34}$+$\sqrt{41}$cm,體積為20cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知平面向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),那么$\overrightarrow{a}$•$\overrightarrow$=x1x2+y1y2;空間向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow$=(x2,y2.z2),那么$\overrightarrow{a}$•$\overrightarrow$=x1x2+y1y2+z1z2.由此推廣到n維向量:$\overrightarrow{a}$=(a1,a2,…,an),$\overrightarrow$=(b1,b2,…,bn),那么$\overrightarrow{a}$•$\overrightarrow$=a1b1+a2b2+a3b3+…+anbn..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)動點(diǎn)P在棱長為1的正方體ABCD-A1B1C1D1的對角線BD1上,記$\frac{{{D_1}P}}{{{D_1}B}}$=λ.當(dāng)∠APC為銳角時,λ的取值范圍是$[{0,\frac{1}{3}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.(1-x)5(1+$\sqrt{x}$)2的展開式中x4的系數(shù)為( 。
A.-10B.-5C.10D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在正方體ABCD-A1B1C1D1中,E是AB的中點(diǎn),F(xiàn)在CC1上,且CF=2FC1,點(diǎn)P是側(cè)面AA1D1D(包括邊界)上一動點(diǎn),且PB1∥平面DEF,則tan∠ABP的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{3}{2}$]B.[0,1]C.[$\frac{1}{3}$,$\frac{\sqrt{10}}{3}$]D.[$\frac{1}{3}$,$\frac{\sqrt{13}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)由圖歸納出f(n)與f(n-1)的關(guān)系式,并求出f(n)表達(dá)式;
(2)求證:$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$$<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知α∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$.
(1)求sin($\frac{π}{4}$+α)的值;      
(2)求cos($\frac{π}{6}$-2α)的值.

查看答案和解析>>

同步練習(xí)冊答案