12.已知平面向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),那么$\overrightarrow{a}$•$\overrightarrow$=x1x2+y1y2;空間向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow$=(x2,y2.z2),那么$\overrightarrow{a}$•$\overrightarrow$=x1x2+y1y2+z1z2.由此推廣到n維向量:$\overrightarrow{a}$=(a1,a2,…,an),$\overrightarrow$=(b1,b2,…,bn),那么$\overrightarrow{a}$•$\overrightarrow$=a1b1+a2b2+a3b3+…+anbn..

分析 根據(jù)平面向量和空間向量數(shù)量積的計(jì)算公式歸納得出結(jié)論.

解答 解:由題意可知$\overrightarrow{a}$•$\overrightarrow$=a1b1+a2b2+a3b3+…+anbn
故答案為:a1b1+a2b2+a3b3+…+anbn

點(diǎn)評(píng) 本題考查了歸納推理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的函數(shù)f(x)滿足:f′(x)>1-f(x),f(0)=6,f′(x)是f(x)的導(dǎo)函數(shù),則不等式$f(x)>1+\frac{5}{e^x}$(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(0,+∞)B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(1,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,a=3,b=4,sinA=$\frac{1}{3}$,則sinB=( 。
A.$\frac{1}{4}$B.$\frac{5}{9}$C.$\frac{1}{12}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,點(diǎn)B是以AC為直徑的圓周上的一點(diǎn),PA=AB=BC,AC=4,PA⊥平面ABC,點(diǎn)E為PB中點(diǎn).
(Ⅰ)求證:平面AEC⊥平面PBC;
(Ⅱ)求直線AE與平面PAC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知單位向量$\overrightarrow a$和$\overrightarrow b$滿足$|{\overrightarrow a-\overrightarrow b}|=\sqrt{3}|{\overrightarrow a+\overrightarrow b}|$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=(x+1)2-alnx在區(qū)間(0,+∞)內(nèi)任取有兩個(gè)不相等的實(shí)數(shù)x1,x2,不等式$\frac{{f({{x_1}+1})-f({{x_2}+1})}}{{{x_1}-{x_2}}}$>1恒成立,則a的取值范圍是( 。
A.(-∞,3)B.(-∞,-3)C.(-∞,3]D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上小正方形的邊長為1,圖中粗線畫出的是某零件的三視圖,該零件由一個(gè)棱長為4的正方體毛坯切削得到,則切削掉部分的體積與原毛坯體積的比值為(  )
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{5}{12}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{8}{3}$B.$\frac{11}{3}$C.4D.$\frac{14}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知Sn為正項(xiàng)數(shù)列{an}的前n項(xiàng)和,且滿足$2{S_n}={a_n}^2+{a_n}(n∈{N^*})$.
(1)求出a1,a2,a3,a4,
(2)猜想{an}的通項(xiàng)公式并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案