設函數(shù)f(x),g(x)在[a,b]上均可導,且f′(x)<g′(x),則當a<x<b時,有( )
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)+g(a)<g(x)+f(a)
D.f(x)+g(b)<g(x)+f(b)
【答案】分析:比較大小常用方法就是作差,構(gòu)造函數(shù)F(x)=f(x)-g(x),研究F(x)在給定的區(qū)間[a,b]上的單調(diào)性,F(xiàn)(x)在給定的區(qū)間[a,b]上是增函數(shù)從而F(x)>F(a),整理后得到答案.
解答:解:設F(x)=f(x)-g(x),
∵在[a,b]上f'(x)<g'(x),
F′(x)=f′(x)-g′(x)<0,
∴F(x)在給定的區(qū)間[a,b]上是減函數(shù).
∴當x>a時,F(xiàn)(x)<F(a),
即f(x)-g(x)<f(a)-g(a)
即f(x)+g(a)<g(x)+f(a)
故選C.
點評:本題考查的知識點是利用導數(shù)研究函數(shù)的單調(diào)性,其中根據(jù)已知條件構(gòu)造函數(shù)F(x)=f(x)-g(x),進而判斷其單調(diào)性是解答本題的關鍵.