已知二次函數(shù)g(x)的圖象經(jīng)過坐標(biāo)原點,且滿足g(x+1)=g(x)+2x+1,設(shè)函數(shù)f(x)=m[g(x+1)-1]-lnx,其中m為常數(shù)且m≠0.
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)-2<m<0時,判斷函數(shù)f(x)的單調(diào)性并且說明理由.
分析:(1)用待定系數(shù)法設(shè)g(x)=ax2+bx+c,再據(jù)題設(shè)條件建立方程求參數(shù),c=0易求,求a,b要求正確理解g(x+1)=g(x)+2x+1恒成立這一特性,即理解函數(shù)相等的意義,通過函數(shù)相等轉(zhuǎn)化出關(guān)于a,b的方程求值.
(2)解出函數(shù)f(x)的表達(dá)式及其定義域,再求導(dǎo),依據(jù)參數(shù)m的取值范圍來判斷導(dǎo)數(shù)的符號,確定函數(shù)f(x)在定義域上的單調(diào)性,解答本題時要注意答題格式.
解答:解:(1)設(shè)g(x)=ax
2+bx+c,g(x)的圖象經(jīng)過坐標(biāo)原點,所以c=0.
∵g(x+1)=g(x)+2x+1∴a(x+1)
2+b(x+1)=ax
2+bx+2x+1
即:ax
2+(2a+b)x+a+b=ax
2+(b+2)x+1
∴a=1,b=0,g(x)=x
2;(6分)
(2)當(dāng)-2<m<0時,判斷函數(shù)f(x)在其定義域上單調(diào)遞減,證明如下:
∵函數(shù)f(x)=mx
2+2mx-lnx的定義域為(0,+∞),
∴
f′(x)=2mx+2m-=.
令k(x)=2mx
2+2mx-1,
k(x)=2m(x+)2--1,
∵-2<m<0,∴k(x)=2mx
2+2mx-1<0在(0,+∞)上恒成立,
即f′(x)<0在(0,+∞)上恒成立.
∴當(dāng)-2<m<0時,函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞減.(13分)
點評:考查函數(shù)相等,求定義域的方法,用導(dǎo)數(shù)數(shù)判斷函數(shù)的單調(diào)性,綜合性較強.