18.如圖1,在邊長為$2\sqrt{3}$的正方形ABCD中,E、O分別為 AD、BC的中點,沿 EO將矩形ABOE折起使得∠BOC=120°,如圖2,點G 在BC上,BG=2GC,M、N分別為AB、EG中點.
(Ⅰ)求證:OE⊥MN;
(Ⅱ)求點M到平面OEG的距離.

分析 (Ⅰ)取OG的中點的H,連結HN,HB,證明$HN=\frac{1}{2}OE$,推出四邊形MNHB為平行四邊形,得到MN∥BH,證明OE⊥平面OBC,然后推出OE⊥MN.
(Ⅱ)說明點M到平面OEG的距離為點B到平面OEG的距離,在三角形OBC中,推出∠OBG=30°,在△OBC中,求出BG=2,求出OG,然后求解點B到平面OEG的距離.

解答 (本小題滿分12分)
證明:(Ⅰ)如圖6,取OG的中點的H,連結HN,HB,…(1分)
由N為EG中點,得△GOE中位線HN∥OE,且$HN=\frac{1}{2}OE$,
又BM∥OE,M為且AB中點,故$BM=\frac{1}{2}AB=\frac{1}{2}OE$,
∴HN∥BM,且HN=BM∴四邊形MNHB為平行四邊形,
∴MN∥BH.…(2分)
在正方形ABCD中,E、O分別為 AD、BC的中點
∴$\left\{\begin{array}{l}OE⊥OB\\ OE⊥OC\\ OB∩OC=O\end{array}\right.$得OE⊥平面OBC,…(3分)
又BH?平面OBC,∴OE⊥BH,∴OE⊥MN.…(5分)
(Ⅱ)解:∵在邊長為$2\sqrt{3}$的正方形ABCD中,E、O分別為 AD、BC的中點
∴AB∥OE,又OE?平面OEG,AB?平面OEG,∴AB∥平面OEG,…(6分)
∴點M到平面OEG的距離為點B到平面OEG的距離.…(7分)
在三角形OBC中,OB=OC=$\sqrt{3}$,∠BOC=120°,∴∠OBG=30°,
在△OBC中,由余弦定理得BC=3,又BG=2GC,∴BG=2,
同法由余弦定理得OG=1,…(9分)
∴OB2+OG2=BG2,即OB⊥OG.
由(Ⅰ)知OE⊥平面OBC,又OB?平面OBC,∴OE⊥OB,
又OE∩OG=O,∴BO⊥平面OEG,…(11分)
∴點B到平面OEG的距離為BO=$\sqrt{3}$.
即點M到平面OEG的距離為$\sqrt{3}$.…(12分)

點評 本題列出直線與平面垂直的性質定理的應用,點到平面的距離的求法,考查空間想象能力以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.設常數(shù)a≠0,函數(shù)$f(x)=lg\frac{x+1-2a}{x+1+3a}$.
(1)當a=1時,判斷并證明函數(shù)y=f(x)在(1,+∞)上的單調性.
(2)是否存在實數(shù)a,使函數(shù)y=f(x)為奇函數(shù)或偶函數(shù)?若存在,求出a的值,并判斷相應的y=f(x)的奇偶性;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}是等差數(shù)列,其首項為2,且公差為2,若${b_n}={2^{a_n}}$(n∈N*).
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)設cn=an+bn,求數(shù)列{cn}的前n項和An

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.若實數(shù)x,y,z滿足x+2y+z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知F1,F(xiàn)2分別是雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a,b>0)$的兩個焦點,過其中一個焦點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓內,則雙曲線離心率的取值范圍是( 。
A.(1,2)B.(2,+∞)C.$(1,\;\sqrt{2})$D.$(\sqrt{2},\;+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.
(Ⅰ)若a=1,解不等式f(x)<6;
(Ⅱ)若對任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某小學共有學生2000人,其中一至六年級的學生人數(shù)分別為400,400,400,300,300,200.為做好小學放學后“快樂30分”活動,現(xiàn)采用分層抽樣的方法從中抽取容量為200的樣本進行調查,那么應抽取一年級學生的人數(shù)為( 。
A.120B.40C.30D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如果關于x的不等式x2<ax+b的解集是{x|1<x<3},那么ba等于(  )
A.-81B.81C.-64D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.數(shù)列{an}中,an+2-2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求證:{an+1-an}是等差數(shù)列;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和Sn

查看答案和解析>>

同步練習冊答案