2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點,橢圓C的焦點F1到雙曲線$\frac{{x}^{2}}{2}$-y2=1漸近線的距離為$\frac{\sqrt{3}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線AB:y=kx+m(k<0)與橢圓C交于不同的A,B兩點,以線段AB為直徑的圓經(jīng)過點F2,且原點O到直線AB的距離為$\frac{2\sqrt{5}}{5}$,求直線AB的方程.

分析 (Ⅰ)根據(jù)橢圓的離心率以及點到漸近線的距離建立方程關系求出a,b即可求橢圓C的方程;
(Ⅱ)設A(x1,y1),B(x2,y2),聯(lián)立直線方程和橢圓方程,轉(zhuǎn)化為一元二次方程,根據(jù)根與系數(shù)之間的關系以及設而不求的思想進行求解即可.

解答 解:(Ⅰ)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,
∴$\frac{c}{a}=\frac{\sqrt{2}}{2}$,
∵雙曲線$\frac{{x}^{2}}{2}$-y2=1的一條漸近線方程為x-$\sqrt{2}$y=0,
橢圓C的左焦點F1(-c,0),
∵橢圓C的焦點F1到雙曲線$\frac{{x}^{2}}{2}$-y2=1漸近線的距離為$\frac{\sqrt{3}}{3}$.
∴d=$\frac{|-c|}{\sqrt{1+2}}=\frac{\sqrt{3}}{3}$=$\frac{c}{\sqrt{3}}$得c=1,
則a=$\sqrt{2}$,b=1,
則橢圓C的方程為$\frac{{x}^{2}}{2}+$y2=1;
(Ⅱ)設A,B兩點的坐標分別為A(x1,y1),B(x2,y2),
由原點O到直線AB的距離為$\frac{2\sqrt{5}}{5}$,
得$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\frac{2\sqrt{5}}{5}$,
即m2=$\frac{4}{5}$(1+k2),①
將y=kx+m(k<0)代入$\frac{{x}^{2}}{2}+$y2=1;得(1+2k2)x2+4kmx+2m2-2=0,
則判別式△=16k2m2-4(1+2k2)(2m2-2)=8(2k2-m2+1)>0,
∴x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
∵以線段AB為直徑的圓經(jīng)過點F2,
∴$\overrightarrow{A{F}_{2}}•\overrightarrow{B{F}_{2}}$=0,
即(x1-1)(x2-1)+y1y2=0
即(x1-1)(x2-1)+(kx1+m)(kx2+m)=0,
即(1+k2)x1x2+(km-1)(x1+x2)+m2+1=0,
∴(1+k2)•$\frac{2{m}^{2}-2}{1+2{k}^{2}}$+(km-1)•(-$\frac{4km}{1+2{k}^{2}}$)+m2+1=0,
化簡得3m2+4km-1=0  ②
由①②得11m4-10m2-1=0,得m2=1,
∵k<0,∴$\left\{\begin{array}{l}{m=1}\\{k=-\frac{1}{2}}\end{array}\right.$,滿足判別式△=8(2k2-m2+1)>0,
∴AB的方程為y=-$\frac{1}{2}$x+1.

點評 本題主要考查橢圓的方程的求解以及直線和橢圓的位置關系,利用方程法以及轉(zhuǎn)化法,轉(zhuǎn)化為一元二次方程,利用根與系數(shù)之間的關系,結合設而不求的思想是解決本題的關鍵.綜合性較強,運算量較大,有一定的難度.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=2,an+an+1=4n-2(n≥2,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1+3b2+7b3+…+(2n-1)bn=an(n≥1,n∈N*),且設Sn=b1+b2+…+bn,求證:Sn<$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.關于x的一元二次方程mx2-2mx+1=0一個根大于1,另一個根小于1,則實數(shù)m的取值范圍是m<0或m>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設D為△ABC所在平面內(nèi)一點,$\overrightarrow{BC}=3\overrightarrow{DC}$,則(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下面用“三段論”形式寫出的演繹推理:因為對數(shù)函數(shù)y=logax(a>0且a≠1)在(0,+∞)上是增函數(shù),y=log${\;}_{\frac{1}{2}}$x是對數(shù)函數(shù),所以y=log${\;}_{\frac{1}{2}}$x在(0,+∞)上是增函數(shù),該結論顯然是錯誤的,其原因是( 。
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.以上都可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求下列函數(shù)的反函數(shù).
(1)y=cosx,x∈[-$\frac{1}{2}$π,0];
(2)y=cosx,x∈[-π,0];
(3)y=cos(2x-$\frac{π}{3}$),x∈[$\frac{π}{4}$,$\frac{2π}{3}$];
(4)y=arccos(x+1),x∈[-2,0];
(5)y=$\frac{π}{2}$+arccos$\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}滿足an+1=$\frac{1}{2}$an+t,a1=$\frac{1}{2}$(t為常數(shù),且t≠$\frac{1}{4}$).
(1)證明:{an-2t}為等比數(shù)列;
(2)當t=-$\frac{1}{8}$時,求數(shù)列{an}的前幾項和最大?
(3)當t=0時,設cn=4an+1,數(shù)列{cn}的前n項和為Tn,若不等式$\frac{12k}{4+n-{T}_{n}}$≥2n-7對任意的n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=|log3x|,若存在兩個不同的實數(shù)a,b滿足f(a)=f(b),則ab=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在平面直角坐標系xOy中,以x的非負半軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓交于點A,B,已知A的橫坐標為$\frac{\sqrt{5}}{5}$,B的縱坐標為$\frac{\sqrt{2}}{10}$,則2α+β=$\frac{3π}{4}$.

查看答案和解析>>

同步練習冊答案