【題目】正方體中,為中點,為中點,則異面直線與所成角的余弦值為____.
【答案】
【解析】
解法一:連結(jié),可證得為異面直線與所成角或其補角,然后在中利用余弦定理可求得結(jié)果;
解法二:如圖,以為原點,分別以的方向為軸的正方向,建立空間直角坐標(biāo)系,利用向量法求解;
解法三:由于,所以以為基底,將,用基底表示出來,再向量夾角公式求解.
解法一:連結(jié),因為四邊形為正方形,為中點,所以.因為,所以四邊形為平行四邊形,所以,又為中點,所以,所以四邊形為平行四邊形,所以,
所以為異面直線與所成角或其補角.設(shè)正方體的棱長為2,在中,;
同理可求.在中,
,
故異面直線與所成角的余弦值為.
解法二:如圖,以為原點,分別以的方向為軸的正方向,建立空間直角坐標(biāo)系.設(shè)正方體的棱長為2,則各點的坐標(biāo)為,所以,
所以.
所以異面直線與所成角的余弦值為.
解法三:設(shè)正方體的棱長為2,
則,,
由三條直線兩兩垂直得,
所以,
,
所以.
所以異面直線與所成角的余弦值為.
故答案為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一副斜邊長為10的直角三角板,將它們斜邊重合,若將其中一個三角板沿斜邊折起形成三棱錐,如圖所示,已知,,則三棱錐的外接球的表面積為______;該三棱錐體積的最大值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示,給出四個函數(shù):①,②,③,④,又給出四個函數(shù)的圖象,則正確的匹配方案是( ).
A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙
C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】采購經(jīng)理指數(shù)(PMⅠ)是衡量一個國家制造業(yè)的“體檢表”,是衡量制造業(yè)在生產(chǎn)、新訂單、商品價格、存貨、雇員、訂單交貨新出口訂單和進(jìn)口等八個方面狀況的指數(shù),圖為2018年9月—2019年9月我國制造業(yè)的采購經(jīng)理指數(shù)(單位:%).
(1)求2019年前9個月我國制造業(yè)的采購經(jīng)理指數(shù)的平均數(shù)(精確到0.1);
(2)從2018年10月—2019年9月這12個月任意選取4個月,記采購經(jīng)理指數(shù)與上個月相比有所回升的月份個數(shù)為X,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).設(shè)與的交點為,當(dāng)變化時,的軌跡為曲線.
(1)求的普通方程;
(2)設(shè)為圓上任意一點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,將曲線繞極點逆時針旋轉(zhuǎn)后得到曲線.
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)若直線:與,分別相交于異于極點的,兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個正三角形挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第4個大正三角形中隨機撒512粒大小均勻的細(xì)小顆粒物,則落在白色區(qū)域的細(xì)小顆粒物的數(shù)量約是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P為直線上任意一點,,M為平面內(nèi)一點,且.
(Ⅰ)求點M的軌跡E的方程;
(Ⅱ)過點P作曲線E的切線,切點分別是.若,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com