4.已知函數(shù)f(x)=|x-10|+|x-20|,且滿足f(x)<10a(a∈R)的解集不是空集.
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)求a+$\frac{4}{{a}^{2}}$的最小值.

分析 (Ⅰ)由條件利用絕對值的意義求得函數(shù)f(x)<10a的解集不是空集時(shí),a的范圍.
(Ⅱ)由條件利用基本不等式求得a+$\frac{4}{{a}^{2}}$的最小值

解答 解:(Ⅰ)函數(shù)f(x)=|x-10|+|x-20|表示數(shù)軸上的x對應(yīng)點(diǎn)到10、20對應(yīng)點(diǎn)的距離之和,
它的最小值為10,由f(x)<10a(a∈R)的解集不是空集,可得10a>10,a>1.
(Ⅱ)當(dāng)a>1時(shí),$a+\frac{4}{a^2}=\frac{a}{2}+\frac{a}{2}+\frac{4}{a^2}$,
又 $\frac{a}{2}+\frac{a}{2}+\frac{4}{a^2}≥3\root{3}{{\frac{a}{2}•\frac{a}{2}•\frac{4}{a^2}}}=3$,當(dāng)且僅當(dāng)$\frac{a}{2}=\frac{4}{a^2}$,即a=2時(shí)等號成立,
所以$a+\frac{4}{a^2}$的最小值為3.

點(diǎn)評 本題主要考查絕對值的意義,基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,以原點(diǎn)O為圓心,以橢圓C的長半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C的右焦點(diǎn)F作斜率為-$\frac{\sqrt{2}}{2}$的直線l交橢圓C于A、B兩點(diǎn),且$\overrightarrow{OA}$+$\overrightarrow{OD}$=$\overrightarrow{BO}$,又點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn)為點(diǎn)E,試問點(diǎn)A,B,D,E四點(diǎn)是否共圓?若是,求出該圓的標(biāo)準(zhǔn)方程;若不是,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在正方體ABCD-A1B1C1D1中,體對角線A1C與面對角線DB異面且垂直.
(1)請?jiān)谠撜叫沃校碚乙唤M具有這樣關(guān)系的對角線:(可以是圖形中還未畫出來的,也可以是已經(jīng)畫出來的)(2)若正方體的棱長為2cm,求直三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥2}\\{2x-y≤4}\\{x-y≥0}\end{array}\right.$,則z=x+2y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.各項(xiàng)都是正數(shù)的等比數(shù)列{an},若a2,$\frac{1}{2}$a3,2a1成等差數(shù)列,則$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$的值為(  )
A.2B.2或-1C.$\frac{1}{2}$D.$\frac{1}{2}$或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在四邊形ABCD中,∠A=∠B=∠C,點(diǎn)E在邊AB上,∠AED=60°,則一定有( 。
A.∠ADE=20°B.∠ADE=30°C.∠ADE=$\frac{1}{3}$∠ADCD.∠ADE=$\frac{1}{2}$∠ADC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=2sinx(x∈[0,π])的值域?yàn)閇1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在Rt△ABC中,AC=BC,PA⊥平面ABC,PB與平面ABC成60°角
(1)求證:平面PBC⊥平面PAC;
(2)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6相交.則?p及?p的真假為( 。
A.¬p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6不相交,¬p為真
B.¬p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6不相交,¬p為假
C.¬p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6不相交,¬p為真
D.¬p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6不相交,¬p為假

查看答案和解析>>

同步練習(xí)冊答案