(本小題滿分13分)已知是邊長為1的正方體,求:
(Ⅰ)直線與平面所成角的正切值;
(Ⅱ)二面角的大。
(Ⅰ);(Ⅱ)60°
解析試題分析:(Ⅰ)先根據(jù)其為正方體得到∠C1AB1就是AC1與平面AA1B1B所成的角;然后在RT△C1AB1中求其正切即可;
(Ⅱ)先過B1作B1E⊥BC1于E,過E作EF⊥AC1于F,連接B1F;根據(jù)AB⊥平面B1C1CB推得B1E⇒AC1;進(jìn)而得到∠B1FE是二面角B﹣AC1﹣B1的平面角;然后通過求三角形的邊長得到二面角B﹣AC1﹣B1的大小即可.
試題解析:(Ⅰ)連接AB1,∵ABCD﹣A1B1C1D1是正方體
∴B1C1⊥平面ABB1A1,AB1是AC1在平面AA1B1B上的射影
∴∠C1AB1就是AC1與平面AA1B1B所成的角
在RT△C1AB1中,tan∠C1AB1=
∴直線AC1與平面AA1B1B所成的角的正切值為.
(Ⅱ)過B1作B1E⊥BC1于E,過E作EF⊥AC1于F,連接B1F;
∵AB⊥平面B1C1CB,⇒AB⊥B1E⇒B1E⇒平面ABC1⇒B1E⇒AC1
∴∠B1FE是二面角B﹣AC1﹣B1的平面角
在RT△BB1C1中,B1E=C1E=BC1=,
在RT△ABC1中,sin∠BC1A=
∴EF=C1E•sin∠BC1A=,
∴tan∠B1FE=
∴∠B1FE=60°,即二面角B﹣AC1﹣B1的大小為60°.
考點:線面角以及二面角的平面角及其求法.
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江西省贛州市北校高二1月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
以下四個關(guān)于圓錐曲線的命題中:
①設(shè)為兩個定點,為非零常數(shù),,則動點的軌跡為雙曲線;
②過定圓上一定點作圓的動點弦,為坐標(biāo)原點,若則動點的軌跡為圓;
③,則雙曲線與的離心率相同;
④已知兩定點和一動點,若,則點的軌跡關(guān)于原點對稱.
其中真命題的序號為 (寫出所有真命題的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com