【題目】從盛滿2升純酒精的容器里倒出1升,然后加滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.

【答案】4
【解析】解:設(shè)開始的濃度為1,操作1次后的濃度為a1=1﹣ ,操作n次后的濃度為an , 則an+1=an(1﹣ ),
∴數(shù)列{an}構(gòu)成a1=1﹣ 為首項,q=1﹣ 為公比的等比數(shù)列,
∴an=(1﹣ n , 即第n次操作后溶液的濃度為(1﹣ n;
當a=2時,可得an=(1﹣ n= ,由an=( n ,解得n>4.
∴至少應(yīng)倒4次后才能使酒精的濃度低于10%.
所以答案是:4.
【考點精析】解答此題的關(guān)鍵在于理解等比數(shù)列的通項公式(及其變式)的相關(guān)知識,掌握通項公式:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=8x的準線與雙曲線 =1(a>0,b>0)相交于A、B兩點,雙曲線的一條漸近線方程是y= x,點F是拋物線的焦點,且△FAB是等邊三角形,則該雙曲線的標準方程是(
A. =1
B. =1
C. =1
D. =1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.

(1)求角B的大;

(2)若△ABC的面積為,求sinA+sinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用紅、黃、藍三種不同顏色給圖中3個矩形隨機涂色,每個矩形只涂一種顏色,求:
(1)3個矩形顏色都相同的概率;
(2)3個矩形顏色都不同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有4個編號依次為1、2、3、4的球,這4個球除號碼外完全相同,先從盒子中隨機取一個球,該球的編號為X,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為Y
(1)列出所有可能結(jié)果.
(2)求事件A=“取出球的號碼之和小于4”的概率.
(3)求事件B=“編號X<Y”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗,甲勝乙的概率為.

(Ⅰ)求比賽三局甲獲勝的概率;

(Ⅱ)求甲獲勝的概率;

(Ⅲ)設(shè)甲比賽的次數(shù)為,求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像與直線相切.

Ⅰ)求的值,并求的單調(diào)區(qū)間;

Ⅱ)若,設(shè),討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高考改革實施方案指出:該省高考考生總成績將由語文、數(shù)學、外語3門統(tǒng)一高考成績和學生自主選擇的學業(yè)水平等級性考試科目共同構(gòu)成,該省教育廳為了解正在讀高中的學生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見,如圖是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(1)根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表,并判斷我們能否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?

注:,其中.

(2)用樣本的頻率估計概率,若隨機在全省不贊成高考改革的家長中抽取3個,記這3個家長中是城鎮(zhèn)戶口的人數(shù)為,試求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l與兩直線y=1,x﹣y﹣7=0分別交于A,B兩點,若直線AB的中點是M(1,﹣1),則直線l的斜率為

查看答案和解析>>

同步練習冊答案