【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.
(1)求角B的大;
(2)若△ABC的面積為,求sinA+sinC的值.
【答案】(1) (2)
【解析】試題分析:(1)化簡cosAsinB+(c﹣sinA)cos(A+C)=0得sinC =ccosB,結(jié)合正弦定理及同角三角函數(shù)關(guān)系式得tanB=,可得B=;(2)根據(jù)三角形的面積得ac=2,由余弦定理得,最后根據(jù)正弦定理得。
試題解析:(1)由cosAsinB+(c﹣sinA)cos(A+C)=0,
得cosAsinB﹣(c﹣sinA)cosB=cosAsinB+ sinAcosB﹣ccosB= 0,
∴sin(A+B)= sinC =ccosB,
∴,
由正弦定理得 ,
∴ ,
∴tanB= ,
∵
∴ B=.
(2)由 ,得ac=2,
由余弦定理得
∴
,
∴a+c=3,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C所對的邊長分別為a,b,c.已知 , .
(Ⅰ)當(dāng)b=2時,求c;
(Ⅱ)求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b= ,a+c=ac,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱柱 ABCD﹣A1B1C1D1中,底面為平行四邊形,以頂點(diǎn) A 為端點(diǎn)的三條棱長都相等,且兩兩夾角為 60°.則線段 AC1與平面ABC所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中, 和是邊長為的等邊三角形, , 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)床廠今年初用98萬元購進(jìn)一臺數(shù)控機(jī)床,并立即投入使用,計劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年的維修、保養(yǎng)修費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利總額y元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)從第幾年開始,該機(jī)床開始盈利?
(3)使用若干年后,對機(jī)床的處理有兩種方案:①當(dāng)年平均盈利額達(dá)到最大值時,以30萬元價格處理該機(jī)床;②當(dāng)盈利額達(dá)到最大值時,以12萬元價格處理該機(jī)床.問哪種方案處理較為合理?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx+ax2+x+1.
(I)a=﹣2時,求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)當(dāng)a=0時,證明xex≥f(x)在(0,+∞)上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從盛滿2升純酒精的容器里倒出1升,然后加滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廣場舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,也是城市精神文明建設(shè)成果的一個重要象征.2016年某校社會實踐小組對某小區(qū)廣場舞的開展?fàn)顩r進(jìn)行了年齡的調(diào)查,隨機(jī)抽取了40名廣場舞者進(jìn)行調(diào)查,將他們年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.
(l)計算這40名廣場舞者中年齡分布在的人數(shù);
(2)若從年齡在中的廣場舞者任取2名,求這兩名廣場舞者中恰有一人年齡在的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com