A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{3}{2}$ |
分析 由已知可求a=$\frac{4b}{5}$,c=$\frac{6b}{5}$,利用余弦定理可求cosA,利用二倍角的正弦函數(shù)公式,正弦定理化簡所求即可計(jì)算得解.
解答 解:∵a:b:c=4:5:6,
∴a=$\frac{4b}{5}$,c=$\frac{6b}{5}$,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{^{2}+\frac{36^{2}}{25}-\frac{16^{2}}{25}}{2b×\frac{6b}{5}}$=$\frac{3}{4}$,
∴$\frac{sin2A}{sinC}$=$\frac{2sinAcosA}{sinC}$=$\frac{2acosA}{c}$=$\frac{2×\frac{4b}{5}×\frac{3}{4}}{\frac{6b}{5}}$=1.
故選:C.
點(diǎn)評(píng) 本題主要考查了余弦定理,二倍角的正弦函數(shù)公式,正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | (-∞,1) | C. | (-1,1) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,-1) | B. | [-3,-1] | C. | [-1,1] | D. | (-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<2} | B. | {x|-2≤x≤1} | C. | {-2,-1,0,1,2} | D. | {-2,-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com