12.求y=3x+$\frac{4}{x}$(x<0)的最大值,并求y取最大值時(shí)相應(yīng)的x的值.

分析 由x<0,變形y=3x+$\frac{4}{x}$=-$(-3x+\frac{4}{-x})$,利用基本不等式的性質(zhì)即可得出.

解答 解:∵x<0,∴y=3x+$\frac{4}{x}$=-$(-3x+\frac{4}{-x})$≤-$2\sqrt{-3x•\frac{4}{-x}}$=-4$\sqrt{3}$,當(dāng)且僅當(dāng)x=-$\frac{2\sqrt{3}}{3}$時(shí)取等號(hào).

點(diǎn)評 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知sin($\frac{π}{4}-α$)=$\frac{\sqrt{2}}{2}$,則cos($\frac{π}{4}+α$)的值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},則
(1)求A∩B,A∪B;
(2)若集合C={x|x>a},A⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某廠生產(chǎn)的某種產(chǎn)品包括一等品和二等品,如果生產(chǎn)出一件一等品,可獲利200元,如果生產(chǎn)出一件二等品則損失100元,已知該廠生產(chǎn)該種產(chǎn)品的過程中,二等品率p與日產(chǎn)量x的函數(shù)關(guān)系是:p=$\frac{3x}{4x+32}$(x∈N*),問該廠的日產(chǎn)量為多少件時(shí),可獲得最大盈利,并求出最大日盈利額.(二等品率p為日產(chǎn)二等品數(shù)與日產(chǎn)量的比值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow$=(2cosθ,-1),且θ∈(0,π),若$\overrightarrow{a}⊥\overrightarrow$,則θ=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.己知橢圓l0x2+5y2=27,過定點(diǎn)C(2,0)的兩條互相垂直的動(dòng)直線分別交橢圓于P,Q兩點(diǎn),F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求向量|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|的最值;
(2)當(dāng)向量$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$與$\overrightarrow{Q{F}_{1}}$+$\overrightarrow{Q{F}_{2}}$互相垂直時(shí),求P,Q兩點(diǎn)所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線$\frac{x^2}{{25-{m^2}}}$-$\frac{y^2}{{11+{m^2}}}$=1(0<m<5)的焦距為(  )
A.6B.12C.36D.$2\sqrt{14-2{m^2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上是增函數(shù),則f(-1)與f(2)的大小關(guān)系是( 。
A.f(-1)≥f(2)B.f(-1)≤f(2)C.f(-1)>f(2)D.f(-1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某人在如圖所示的直角邊長為4米的三角形地塊的每個(gè)格點(diǎn)(指縱、橫的交叉點(diǎn)以及三角形的頂點(diǎn))處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗(yàn),一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如表所示:
X1234
Y51484542
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,求它們恰好“相近”的概率;
(2)從所種作物中隨機(jī)選取一株,求它的年收獲量Y的分布列.

查看答案和解析>>

同步練習(xí)冊答案