【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷函數(shù)的奇偶性,并說明理由;

(3)若函數(shù),求函數(shù)的零點.

【答案】(1) (2) 為奇函數(shù)(3)

【解析】試題分析:1要使函數(shù)有意義, 必須滿足,從而得到定義域;2利用奇偶性定義判斷奇偶性;3函數(shù)的零點即方程的根.即的根,又為奇函數(shù),所以.易證: 在定義域上為增函數(shù),∴由,從而解得函數(shù)的零點.

試題解析:

(1)要使函數(shù)有意義, 必須滿足,∴,

因此, 的定義域為.

(2)函數(shù)為奇函數(shù).

的定義域為,對內(nèi)的任意有:

,

所以, 為奇函數(shù).

(3)函數(shù)的零點即方程的根.即的根,

為奇函數(shù),所以.

任取,且,

,∴,∴

,∴ ,

,∴,

,即,∴在定義域上為增函數(shù),

∴由解得,

驗證當(dāng)時, 不符合題意,當(dāng)時,符合題意,

所以函數(shù)的零點為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若F(x+1)>b對任意x∈(0,+∞)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

(1)求的解析式;

(2)求的值域;

(3)設(shè), 時,對任意總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線C:y2=2px(p>0)的焦點為F,經(jīng)過點F的直線l與拋物線交于P,Q兩點,弦PQ的中點為N,經(jīng)過點N作y軸的垂線與C的準(zhǔn)線交于點T.

(Ⅰ)若直線l的斜率為1,且|PQ|=4,求拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)證明:無論p為何值,以線段TN為直徑的圓總經(jīng)過點F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)當(dāng)時,證明是奇函數(shù);

2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對于任意的實數(shù)x,都有f(x)=4x2﹣f(﹣x),當(dāng)x∈(﹣∞,0)時,f′(x)+ <4x,若f(m+1)≤f(﹣m)+4m+2,則實數(shù)m的取值范圍是( )
A.[﹣ ,+∞)
B.[﹣ ,+∞)
C.[﹣1,+∞)
D.[﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線y=0,x=a(0<a≤1)和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機(jī)投一點P,點P落在區(qū)域A內(nèi)的概率是 ,則a的值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了研究年宣傳費(單位:千元)對銷售量(單位:噸)和年利潤(單位:千元)的影響,搜集了近 8 年的年宣傳費和年銷售量數(shù)據(jù):

1

2

3

4

5

6

7

8

38

40

44

46

48

50

52

56

45

55

61

63

65

66

67

68

(Ⅰ)請補(bǔ)齊表格中 8 組數(shù)據(jù)的散點圖,并判斷中哪一個更適宜作為年銷售量關(guān)于年宣傳費的函數(shù)表達(dá)式?(給出判斷即可,不必說明理由)

(Ⅱ)若(Ⅰ)中的,且產(chǎn)品的年利潤, 的關(guān)系為,為使年利潤值最大,投入的年宣傳費 x 應(yīng)為何值?

查看答案和解析>>

同步練習(xí)冊答案